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In this contribution we present analytical results on a model for dynamic fracture in viscoelastic materials at small strains that
have been obtained in full depth in [1]. In the model, the sharp crack interface is regularized with a phase-field approxima-
tion, and for the phase-field variable a viscous evolution with a quadratic dissipation potential is employed. A non-smooth
penalization prevents material healing. The viscoelastic momentum balance is formulated as a first order system and coupled
in a nonlinear way to the non-smooth evolution equation of the phase field. We give a full discretization in time and space
using a discontinuous Galerkin method for the first-order system. We discuss the existence of discrete solutions and, with the
step size in space and time tending to zero, their convergence to a suitable notion of weak solution of the system. Eventually,
we provide a numerical benchmark and compare it with simulation results found in [2].
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1 Introduction

Understanding the dynamics of fracture and damage in deformable solids is an ongoing field of research in engineering
sciences and a rigorous mathematical analysis of proposed models is still challenging.
Fracture in a deformable solid appears as a spatial discontinuity in the material domain Ω ⊂ Rd, d ∈ {2, 3}. One well-
established concept to overcome inherent numerical and analytical difficulties is to regularize the sharp crack interface with
a phase-field approximation. For this, the internal variable z : Ω → [0, 1] is introduced to represent the volume fraction of
undamaged material and a variational approach with interacting potential and crack surface energies is followed [3].

Dynamic fracture refers to processes where rapid external loadings are applied to the system or the interplay of elastic wave
and crack propagation are too significant to neglect the inertial forces. An illustrative example for the latter phenomenon is
the numerical 1D example in Figure 1. Here, a pressure wave is induced from left and right into the sample material, e.g. a
thin rod where ends are not fixed. In each picture, the upper plot shows the propagation of the elastic wave marking tensile
stress in red and compressive stress in blue. The respective lower plot tracks the damage of the material with 0 for completely
damaged and 1 for undamaged material. The reflection at the free boundaries turns pressure into tensile stress in Fig. 1b
and by superposition the stress becomes large enough to develop some crack as seen in Fig. 1d-f. The process continues and
the waves are reflected at the crack that forms an additional free boundary. In Fig. 1l, again by superposition of waves with
different directions, two additional cracks appear in a certain distance on the left and right of the center crack. For this effect,
the correct description of the wave propagation is essential. While existence of solutions in such dynamic context has been
shown with second-order formulations for the momentum balance (see, e.g., [4–8]), it is known that time discretizations using
finite differences or Newmark methods reveal a high numerical dissipation as discussed in [9]

Therefore, to make the numerical implementation robust against spurious energy loss, the viscoelastic momentum balance
is reformulated as a first-order system combined with a spatial approximation employing a discontinuous Galerkin method.
This method has been developed and tested in [9]. In [1] we provide a mathematical rigorous convergence analysis for the
algorithm of [9]. These analytical results we present here in the following.

In this paper, the dynamic fracture is monitored within the time interval [0, T ] ⊂ R in the domain Ω ⊂ Rd, d ∈ {2, 3},
which represents the viscoelastic material. We introduce the displacement field u : [0, T ] × Ω → Rd, the velocity v = ∂tu,
the linearized strain ε = sym(Du) = 1

2 (Du + DuT) as a measure for the strain for small deformations and the strain rate
ε̇ = ∂tε = sym(Dv) where ε̇ and ∂tε denote the time derivative of ε. With constant material tensors, C ∈ Rd×d×d×d

sym the
Hookean elasticity tensor, damping tensor D ∈ Rd×d×d×d

sym and the degradation function g ∈ C2(R), the degraded viscoelastic
stress response is given by σ = g(z)Cε+D∂tε. Assuming initial values u0 and ε0 with ε0 = sym(Du0), the displacement u

can be recovered such that u(t) = u0 +

∫ t

0

v(s) ds. Then, the second-order approach in [8] is reformulated with a first-order
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Fig. 1: 1D simulation of crack and elastic wave interplay.

of the momentum balance in terms of state variables (v, ε,σ) as

ϱ0∂tv − divσ = f , (1a)

∂tε− sym(Dv) = 0 , (1b)

σ − g(z)Cε− D∂tε = 0 (1c)

with mass density ϱ0 > 0 and volume force density f , compare also to [9]. The analysis includes the case D = 0 without
viscosity, but then the regularity of the solution is reduced. To characterize the fraction of damage in a material point, the
phase-field variable z : [0, T ] × Ω → [0, 1] is used where z(t, x) = 1 stands for completely sound material and z(t, x) = 0
for maximal damage. A monotone evolution of the damage variable so that material healing is forbidden, is enforced with the
help of the characteristic function

χ(−∞,0](ż) =

{
∞ ż > 0 ,

0 ż ≤ 0 .

This results in a non-smooth evolution law for the phase-field variable in terms of a subdifferential inclusion that reads

0 ∈ τr∂tz + ∂χ(−∞,0](∂tz) +
1

2
g′(z)Cε : ε−Gc

(
1− z + l2c∆z

)
in (0, T )× Ω . (2)

The phase-field evolution depends on a retardation time τr > 0, a length scale lc > 0 and a scaling factor Gc > 0. Here, Gc
depends on the Griffiths constant for brittle fracture and also on the length scale 1/lc. In particular, the term −(1− z + lc∆z)
is responsible for the phase-field approximation of the sharp crack surface in the spirit of [10]. The evolution laws (1) and (2)
are complemented by initial and boundary conditions on ∂Ω = ∂NΩ ∪ ∂DΩ with ∂NΩ denoting the Neumann and ∂DΩ the
Dirichlet boundary:

v(0) = v0 in Ω , ε(0) = ε0 in Ω , z(0) = 1 in Ω ,

σn = gN on (0, T )× ∂NΩ , v = vD on (0, T )× ∂DΩ , ∇z · n = 0 on (0, T )× ∂Ω

with initial data v0 and ε0, volume forces f , and boundary data gN and vD.
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Structure of the paper. In Sect. 2 the setup of the problem is specified with mathematical assumptions on the domain and
given data, and a weak formulation is presented. Sect. 3 introduces the discrete system with a staggered implicit discretization
scheme for the time and a discontinuous Galerkin approach for the space which originates in the solution theory of first-order
hyperbolic systems. In Sect. 4 analytical results are presented and we refer for the comprehensive proofs to [1]. In 4.1 the
existence of discrete solutions is stated. While for the elastic part a linear system of equations has to be solved, the case for
the phase-field evolution is more involved and relies on a generalized Newton method with a descent approach to ensure also
an energy stability estimate. In Lemma. 4.3, the limit passage is performed and the existence of weak solutions in the sense
of Def. 2.1 is concluded in Theorem 4.4.

The terminal section considers the concept of peridynamics that has moved into the focus of engineering applications in the
recent past as an alternative to classical continuum mechanics. In our project various alternative concepts for the description
of fracture and their compatibility with approximation methods are investigated. In this regard, the approach of peridynamics
as continuum-kinematics based peridynamics for the propagation of fracture looks promising [11] and avoids restrictions in
the description of material response [12–14]. Thus, we close this manuscript with numerical examples in Sect. 5 comparing
the simulation of a curved bar under pressure implemented using the continuum-kinematic based peridynamics (CPD) and the
classial continuum mechanics method with a phase-field regularization as described in this manuscript.

2 Mathematical assumptions and weak formulation

In order to present a weak formulation of the momentum balance (1) and the differential inclusion (2), we make the following
assumptions.

Assumptions on the domain: We assume that Ω ⊂ Rd for d ∈ {2, 3} is a bounded Lipschitz domain with boundary
∂Ω = Ω \ Ω and relatively open Dirichlet and Neumann boundaries ∂DΩ, ∂NΩ ⊂ ∂Ω such that ∂DΩ ∪ ∂NΩ = ∂Ω. We
denote by Q = (0, T )× Ω the time-space cylinder.

Assumptions on the tensors C,D and the degradation function g: The material tensors C, D ∈ Rd×d×d×d
sym are assumed

to be positive definite, i.e. CA : A > 0 and DA : A ≥ 0 for 0 ̸= A ∈ Rd×d
sym . The material is degraded by the function

g ∈ C2(R) which is monotone g′ ≥ 0 and bounded away from zero g(0) = g∗ > 0 since we are assuming locally constant
growth g′(z) = 0 for z ≤ 0 and z ≥ 2. Then, 0 < g∗ < g∗ and g∗∗ > 0 exists such that 0 < g∗ ≤ g(z) ≤ g∗ and
0 ≤ g′(z) ≤ g∗∗, so that g(z), g(z)−1 ∈ L∞(Ω) for z ∈ H1(Ω).

Assumptions on the given data: We assume f ∈ L2(Q;Rd) for the external volume force in (1a), for the boundary data,
gN ∈ L2((0, T )×∂NΩ;Rd) and vD ∈ L2((0, T )×∂DΩ;Rd), and for the initial data v0 ∈ L2(Ω;Rd) and ε0 ∈ L2(Ω;Rd×d

sym).
Then, for Q = (0, T )× Ω smooth function spaces are introduced

V = C1(Q;Rd) , VT,D =
{
w ∈ V : w(T ) = 0 in Ω , w = 0 on (0, T )× ΓD

}
,

W = C1(Q;Rd×d
sym ) , WT =

{
Φ ∈ W : Φ(T ) = 0 in Ω

}
,

WT,N =
{
Ψ ∈ WT : Ψn = 0 on (0, T )× ΓN

}
, Z =

{
φ ∈ C1(Q) : φ ≤ 0 a.e. in Q

}
.

In addition, we set

mQ

(
(v, ε), (w,η)

)
=

(
ϱ0v,w

)
Q
+
(
ε,η

)
Q
, aQ

(
(v,σ), (w,Φ)

)
=

(
σ, sym(Dw)

)
Q
+
(
v,divΦ

)
Q
,

rQ
(
z; (ε,σ),Ψ

)
=

(
σ − g(z)Cε,Ψ

)
Q
, bQ(z, φ) = −Gc

(
1− z, φ

)
Q
+Gcl

2
c

(
∇z,∇φ

)
Q

and

ℓQ(w,Φ,Ψ) =
(
f ,w

)
Q
+
(
ϱ0v0,w(0)

)
Ω
+

(
ε0,Φ(0)− DΨ(0)

)
Ω
+

(
vD,Φn

)
(0,T )×ΓD

+
(
gN,w

)
(0,T )×ΓN

where (·, ·)Q denotes the inner product on L2(Q), L2(Q;Rd) or L2(Q;Rd×d
sym) depending on the respective arguments. Here,

in the last line, the form ℓQ depends on the data f , v0, ε0, vD, and gN.
A variational characterization of the elastic system in (1) is found by testing with smooth test functions (w,Φ,Ψ) ∈

VT,D ×WT,N ×WT and integrating by parts to shift all derivatives to the test functions. Similar one proceeds for the phase-
field evolution in (2) and a suitable weak formulation for the system is given by:

Definition 2.1 (Weak solution) The triple (v, ε,σ) ∈ L2(Q;Rd×Rd×d
sym ×Rd×d

sym ) and z ∈ H1(0, T ; L2(Ω))∩L2(0, T ; H1(Ω))
with z(0) = 1 in Ω is a weak solution of the system (1), (2) if for all smooth test functions (w,Φ,Ψ) ∈ VT,D ×WT,N ×WT

and φ ∈ Z it is satisfied

−mQ

(
(v, ε), (∂tw, ∂tΦ− D∂tΨ)

)
+ aQ

(
(v,σ), (w,Φ)

)
+ rQ

(
z; (ε,σ),Ψ

)
− ℓQ(w,Φ,Ψ) = 0 , (5a)

τr
(
∂tz, φ

)
Q
+

1

2

(
g′(z)Cε : ε, φ

)
Q
+ bQ(z, φ) ≥ 0 . (5b)
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If D is positive definite, also an energy-dissipation inequality holds true, i.e.,

Ekin
(
v(t)

)
+ Eel

(
z(t), ε(t)

)
+ Epf

(
z(t)

)
+

∫ t

0

2Rvis(∂sε) +Rpf(∂sz) ds

≤ Ekin
(
v(0)

)
+ Eel

(
z(0), ε(0)

)
+ Epf

(
z(0)

)
+

∫ t

0

Eext
(
s,v(s)

)
ds .

(5c)

Above, in (5c) we have used the following notation for the energy functionals and dissipation potentials in the system:

Eel(z, ε) =

∫
Ω

1

2
g(z)Cε : ε dx , Epf(z) =

Gc

2

∫
Ω

(
(1− z)2 + l2c |∇z|2

)
dx , Ekin(v) =

ϱ0
2

∫
Ω

|v|2 dx , (6)

Eext(t,v) =

∫
Ω

f(t) · v dx+

∫
∂NΩ

gN(t) · v dx , Rvis(ε̇) =

∫
Ω

1

2
Dε̇ : ε̇ dx , Rpf(ż) =

∫
Ω

τr

2
|ż|2 + χ(−∞,0](ż) dx .

In the quadratic potential Eel the phase field z and the strain ε are coupled in a nonlinear way through the degradation
function g: Elastic forces are small in regions where the damage is large. The functional Epf is of Modica-Mortola type and
approximates the sharp crack interface , and Rvis is a viscous dissipation potential depending on the strain rate ε̇. The second
summand in the quadratic dissipation potential Rpf imposes the monotonicity constraint for the phase-field variable z.

3 Discrete System

A weak solution in the sense of Definition 2.1 is approximated by a fully discrete scheme in space and time.

Approximation in space The viscoelastic wave equation is approximated with a discontinuous Galerkin (DG) method and
the phase field with lowest order conforming finite elements. On a mesh Ωh =

⋃
K∈Kh

K with (open) cells K, let V dg
h =∏

K∈Kh
Pk(K;Rd) and W dg

h =
∏

K∈Kh
Pk(K;Rd×d

sym ) be the discontinuous finite element space of polynomial degree k ≥ 1,
and let V cf

h ⊂ P(Ωh) ∩ C0(Ω) be the lowest order conforming finite elements. We assume that the mesh is shape regular and
that diam(K) ≤ h for K ∈ Kh. The DG approximation of the discontinuous functions (vh,σh), (wh,Φh) ∈ V dg

h ×W dg
h is

attained by solving a Riemann problem locally between faces of neighbouring finite element cells to find a good approximation
for the crossing flux (see details in [1], derivation for linear elasticity in [15, 16]). Depending on the phase field zh ∈ V cf

h the
operators

adg
h

(
zh; (vh,σh), (wh,Φh)

)
=

(
σh, sym(Dwh)

)
Ωh

+
(
vh,divΦh

)
Ωh

+ [jump terms] (7)

ℓdg
h

(
t, zh; (wh,Φh)

)
=

(
f(t),wh

)
Ω
+

(
vD(t),Φhn

)
ΓD

+
(
gN(t),wh

)
ΓN

+ [jump terms] (8)

are defined that provide two main features used in the analysis: Monotonicity, that is adg
h

(
zh; (vh,σh), (vh,σh)

)
≥ 0 and

consistency, i.e. for smooth test functions (w,Φ) ∈ VT,D ×WN and t ∈ (0, T ) it is

adg
h

(
zh; (vh,σh), (w,Φ)(t)

)
=

(
σh, sym(Dw)(t)

)
Ω
+

(
vh,divΦ(t)

)
Ω
,

ℓdg
h

(
t, zh; (w,Φ)(t)

)
=

(
f(t),w

)
Ω
+

(
vD(t),Φ(t)n

)
ΓD

+
(
gN(t),w(t)

)
ΓN

.

Approximation in time In the time-discrete formulation, the non-smooth constraint ∂tz ≤ 0 is approximated using a Yosida
regularization (θh/2)M

2
+(ż) defined by M+(ż) = max{ż, 0} and a penalty parameter θh > 0 s.t. θh → ∞ as h → 0. With

this, a regularization of the viscous dissipation potential for the phase field, Rpf from (6), is given by

Rpf
h (ż) =

∫
Ω

(
τr

2
|ż|2 + θh

2
M2

+(ż)

)
dx ,

and we set

mΩ

(
(v, ε), (w,η)

)
=

(
ϱ0v,w

)
Ω
+
(
ε,η

)
Ω
, v,w ∈ L2(Ω;Rd) , ε,η ∈ L2(Ω;Rd×d

sym ) ,

rΩ
(
z; (ε,σ),Ψ

)
=

(
σ − g(z)Cε,Ψ

)
Ω
, z ∈ L∞(Ω) , σ, ε,Ψ ∈ L2(Ω;Rd×d

sym ) ,

bΩ(z, φ) = −Gc
(
(1− z), φ

)
Ω
+Gcl

2
c

(
∇z,∇φ

)
Ω
, z, φ ∈ H1(Ω) .

Depending on zn−1
h ∈ V cf

h and εn−1
h , we define the coercive functional

Gn
h (zh) =

∫
Ω

( τr

2△tnh

(
zh − zn−1

h

)2
+

θh
2 △tnh

M2
+

(
zh − zn−1

h

)
+

1

2
g(zh)Cεn−1

h : εn−1
h +

Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx .

For convience of the presentation uniform time steps △tnh = △th = T/Nh with Nh ∈ N and Nh → ∞ as h → 0 are
employed. We set t0h = 0, tnh = n△th and choose initial values (v0

h, ε
0
h,σ

0
h) ∈ V dg

h ×W dg
h ×W dg

h and 1 = z0h ∈ V cf
h i.e. the

material without fracture. For every time step n = 1, 2, 3, . . . a staggered time-discrete scheme is introduced as follows:
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(S1) Depending on (εn−1
h , zn−1

h ), approximate the phase field znh ∈ V cf
h by solving the nonlinear equation

τr

△tnh

(
znh − zn−1

h , φh

)
Ω
+

θh
2 △tnh

( d

dz
M2

+(z
n
h − zn−1

h ), φh

)
Ω
+

1

2

(
g′(znh )Cε

n−1
h : εn−1

h , φh

)
Ω
+ bΩ(z

n
h , φh) = 0 ,

for φh ∈ V cf
h such that Gn

h (z
n
h ) ≤ Gn

h (z
n−1
h ); this can be achieved by starting the iterative solution method with zn−1

h .

(S2) Depending on (vn−1
h , εn−1

h ,σn−1
h ) and znh , solve for (vn

h, ε
n
h,σ

n
h) ∈ V dg

h ×W dg
h ×W dg

h the linear equation

mΩ

(
(vn

h, ε
n
h), (wh,Φh − DΨh)

)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (wh,Φh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h),Ψh

)
= mΩ

(
vn−1
h , εn−1

h ), (wh,Φh − DΨh)
)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (wh,Φh)

)
, (wh,Φh,Ψh) ∈ V dg

h ×W dg
h ×W dg

h .

For simplicity of the presentation, we consider in the following only the case of homogeneous boundary data vD = 0 and
gN = 0. The volume forces are approximated by the L2 projection fnh ∈ V dg

h in (tn−1
h , tnh) × Ω while (v0

h, ε
0
h) are the L2

projections of the initial values (v0, ε0). Note that in [1] a variable time step is discussed where the step size is adjusted
depending on the energy release, see also [9, Elastic time step, Dissipative time step, p. 6].

4 Analytical results

The following results are presented here without proofs. The detailed arguments can be found in [1]. At first, we introduce the
notation △εnh = εnh−εn−1

h and △znh = znh−zn−1
h and define interpolants (zh,vh, εh,σh) ∈ L2(0, T ;V cf

h ×V dg
h ×W dg

h ×W dg
h )

by (zh,vh, εh,σh)(t) = (znh ,v
n
h, ε

n
h,σ

n
h) in (tn−1

h , tnh) and (żh, ε̇h) ∈ L2(0, T ;V cf
h ×W dg

h ) by (żh, ε̇h)(t) =
1

△tnh
(△znh ,△ε

n
h)

for t ∈ (tn−1
h , tnh).

To establish existence of discrete solutions, for (S2) a linear system of equations has to be solved while the damage evolution
(S1) is more involved due to the nonlinearities coming from the Yosida term and the z-dependence of the elastic term.

Lemma 4.1 (Existence of discrete solutions) Let the assumptions stated in Sect. 2 hold true. Then, for every n = 1, . . . , N

and N ∈ N there exists a solution znh ∈ V cf
h of the nonlinar problem (S1) and a unique solution (vn

h, ε
n
h,σ

n
h) ∈ V dg

h ×
W dg

h ×W dg
h in (S2). In case of homogeneous boundary data vD = 0, gN = 0, the discrete solution is bounded by the discrete

energy-dissipation inequality

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

n∑
k=1

(
2

△tk
Rvis(△εkh) +

1

△tk
Rpf

h (△z
k
h)

)

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

n∑
k=1

△tk
(
fkh,v

k
h

)
Ω
.

(10)

From the discrete energy-dissipation inequality the following uniform bounds can be deduced:
Lemma 4.2 (Uniform bounds) Let the assumptions of Lemma 4.1 hold true. Then, for all h > 0 the discrete solution

(zh,vh, εh, żh,D1/2ε̇h) is uniformly bounded in Q = (0, T )× Ω by

ϱ0
4

∥∥vh

∥∥2
Q
+

1

2

∥∥g(zh)1/2C1/2εh
∥∥2
Q
+

Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh
∥∥2
Q

)
+
∥∥D1/2ε̇h

∥∥2
Q
+

τr

2

∥∥żh∥∥2Q
+

θh
2

∥∥max{żh, 0}
∥∥2
Q
≤ max{T, 1}

(
Ekin(v0

h) + Eel(z0h, ε
0
h) + Epf(z0h)

)
+

max{T, 1}2

ϱ0

∥∥f∥∥2
Q
.

We consider a shape-regular family
(
Ωh

)
h∈H of meshes with 0 ∈ H. By the uniform bounds in Lemma 4.2 and standard

compactness arguments we can investigate the limit process as h → 0.
Lemma 4.3 Given the assumptions of Lemma 4.2, there exists a weakly converging subsequence

(zh,vh, εh, żh,D1/2ε̇h)h∈H0
with H0 ⊂ H and 0 ∈ H0. For the limit

(z,v, ε, ż,D1/2ε̇) ∈ L2
(
0, T ; H1(Ω)

)
× L2(Q;Rd)× L2(Q;Rd×d

sym )× L2(Q)× L2(Q;Rd×d
sym ) ,

the weak derivative ∂tz exists, and we have z ∈ H1
(
0, T ; L2(Ω)

)
with z(0) = z0, ∂tz = ż ≤ 0 a.e. in Q.

If, in addition, D is positive definite, also the weak derivatives ∂tε and sym(Dv) exist, and it is ∂tε = ε̇ = sym(Dv).
Using a generalized Aubins-Lions statement [17, Lemma 7.7, p. 194], Lemma 4.2 and 4.3 imply strong convergence

zh → z in L2(Q) for the phase-field variable and thus allow to pass to the limit in (S1). In particular one can conclude that
(σh)h∈H0 converges weakly to σ = g(z)Cε + D∂tε in L2(Q;Rd×d

sym ) and the limit passage in (S2) is clear. Moreover, for
positive definite D a discrete Aubin-Lions compactness result in [18] enables to find that the extracted limit (z,v, ε,σ) also
satisfies the energy-dissipation inequality (5c). Alltogether it follows the existence of solutions in the sense of Def. 2.1.

Theorem 4.4 (Existence of weak solutions) Let the assumptions of Lemma 4.1 be satisfied. The weak limit (z,v, ε,σ) ∈
H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω))× L2(Q;Rd)× L2(Q;Rd×d

sym )× L2(Q;Rd×d
sym ) of the sequence (zh,vh, εh,σh)h∈H0 is a

solution of the weak formulation (5).
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5 Numerical examples

We here present a 2D numerical experiment: Similar to the 1D example in the introduction, a curved bar is exposed to pressure
waves from left and right, see Fig. 2. Superposition of waves inside the material leads to the formation of a crack, see Fig.
2 a, c. The rupture triggers new waves propagating through the material. These waves again superpose, the same effect as
before arises and further cracks are formed, as can be seen in Fig. 2 b, d. Figure 2 a, b shows the damage distribution obtained
by the FE-approach discussed in the preceding sections. In the numerical experiment the evolution of the phase filed was
implemented using a maximum principal stress criterion. For comparison we also provide in Fig. 2 c, d the results of the
experiment simulated with continuum-kinematics based peridynamics approach that was introduced in [12–14] and we also
refer to [2]. Both numerical methods qualitatively capture the features of the experiment well. In particular fracture initiates
and propagates in the same, physically expected regions of the bar.

Fig. 2: Damage of a 2d curved bar; a, b: FE-approach; c, d: continuum-kinematics based peridynamics. The setup for the benchmark
including loading conditions and material parameters is given in [9] for the FE-approach and in [11] for the continuum-kinematics based
peridynamics approach.
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