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Reference map approach to Eulerian thermomechanics
using GENERIC

Dirk Peschka, Marita Thomas, Andrea Zafferi

In memory of Wolfgang Dreyer, who we will always remember for
his passion for thermodynamics and his love for a good argument.

Abstract

An Eulerian GENERIC model for thermo-viscoelastic materials with diffusive components is derived
based on a transformation framework that maps a Lagrangian formulation to corresponding Eulerian coordi-
nates. The key quantity describing the deformation in Eulerian coordinates is the inverse of the deformation,
i.e. the reference map. The Eulerian model is formally constructed, and by reducing the GENERIC system
to a damped Hamiltonian system, the isothermal limit is derived. A structure-preserving weak formulation is
developed. As an example, the coupling of finite strain viscoelasticity and diffusion in a multiphase system
governed by Lagrangian indicator functions is demonstrated.

1 Introduction

There is a plethora of thermomechanical models with diffusion that are relevant for numerous applications in the
natural sciences. Among them, one can distinguish models for fluids or solids that may be either compressible
or incompressible, cf. e.g. [46, 23, 32, 33, 45, 38]. These models can include diffusive or reactive components
[11, 16, 12, 22] or even incorporate multiple phases, featuring phase transitions or phase separation [4, 3, 19, 1].
For solids, complex viscoelastic effects are relevant for hydrogels [35], in soft matter physics [20] as well as in
geomechanics [42].

The wide applicability of these models, which all have a similar structure and thermodynamic basis, necessitates
a unified thermomechanical framework that allows for large deformations. While thermo-viscoelastic models with
large deformations are naturally formulated in the Lagrangian frame [46, 36, 41, 13, 6], this can be impractical for
certain cases, e.g., when coupled with other effects that act in the current configuration, such as diffusion or fluid
flow. In such situations an Eulerian formulation might be more suitable [56]. In a Lagrangian frame, compress-
ible fluids and solids share a canonical skew-symmetric thermomechanical structure with irreversible dissipation
but differ in their energy dependence on mechanical deformation, i.e., on the tensorial deformation gradient for
hyperelastic solids and on the scalar volume for fluids. In contrast, in an Eulerian description, fluids and solids
already differ in their choice of unknowns. Besides momentum as a state variable, fluid models typically track
the volume via the Eulerian mass density, whereas solids evolve deformation via a tensor related to stress or
strain [47, 55] transported by suitable Lie derivatives [36]. An alternative approach employs evolution equations
for the vectorial reference map [30, 57], i.e., the inverse of the deformation, which is therefore sometimes also
called in literature the inverse map [15, 54], return map [64], or back-to-labels map [14]. These approaches
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can be especially useful when dealing with Fluid-Structure Interaction (FSI) problems [54, 57]. In [2], the au-
thors implicitly also employ the reference map technique to evolve Eulerian displacements in a fluid–structure
interaction problem involving capillary interfaces. This requires a careful and systematic consideration of the
transformations between the Lagrangian reference configuration and the Eulerian deformed configuration in a
thermodynamic framework.

In his book Understanding Non-Equilibrium Thermodynamics, Lebon presents a clear overview of the various
schools that have evolved to study systems far from equilibrium [31]. There is no uniquely correct way to de-
scribe these processes, and different approaches have emerged based on distinct ideas of how to construct
such theories. For example, classical irreversible thermodynamics is built on conservation laws and constitutive
relations, while rational thermodynamics, pioneered by Truesdell [60], Coleman and Noll [46], follows a more
systematic method to ensure consistency with the second law of thermodynamics. For fluids and mixtures,
many well-developed theoretical extensions offer thermodynamically consistent formulations of complex sys-
tems, e.g. see Thermo-Fluid Dynamics of Two-Phase Flow by Ishii and Hibiki [28], Thermodynamics of flowing
systems: with internal microstructure by Beris and Edwards [9], as well as the treatments by deGroot and Mazur
in [18]. We also highlight the work Continuum thermodynamics of chemically reacting fluid mixtures by Dreyer
and Bothe, who present a general model for diffusive and reactive mixtures and flows, along with an excellent
overview of the different thermodynamic schools [12]. Similarly, for solids, dedicated texts such as The mechan-
ics and thermodynamics of continua by Gurtin, Fried, and Anand provide rigorous frameworks that adhere to
thermodynamic principles [25].

These approaches are complemented by more geometrical methods based on symplectic structures, Lie brack-
ets, and gradient structures, such as the methods for metriplectic, port-Hamiltonian, or GENERIC systems
[44, 43, 22, 37, 63, 38]. GENERIC, the acronym for General Equations of Non-Equilibrium Reversible Irreversible
Coupling, is a thermodynamic formalism that was first introduced by Grmela and Öttinger [24, 50], based on the
definition of thermodynamic potentials and geometric structures for conservative or reversible and for dissipa-
tive and irreversible processes, respectively. Grounded in thermodynamic functions like energy and entropy, the
GENERIC formalism uses suitable geometric operators to generate the evolution of the state variables of the
system. For over-damped systems, the structure of gradient flows can also ensure Onsager reciprocity by design
[29, 48, 49, 20, 52]. Overall, these different approaches to thermomechanical systems are largely compatible
and create a rich landscape of thermodynamic models — one that continues to spark lively debates about their
respective advantages and disadvantages, with no final consensus among the thermodynamics community in
sight.

In [66] we previously developed a mechanism to handle transformations between Lagrangian and Eulerian for-
mulations of GENERIC systems and studied their implications on the thermodynamic formulation of systems of
reactive multispecies fluids within the framework of GENERIC. In [59] it was shown that the GENERIC formalism
extends to thermomechanical systems with state variables interacting between bulk and interfaces in terms of a
weak formulation of GENERIC, which naturally encodes coupling conditions along the interfaces. Using such a
weak formulation of GENERIC, in [53] we studied the transformation behaviour suited for a structure-preserving
numerical discretization for a fluid-structure interaction problem using the reference map.

The main goal of this work is to provide an Eulerian GENERIC formulation for fluids and solids undergoing large
deformations in terms of the reference map and show the feasibility of the weak form for structure-preserving
numerical discretization. We establish two equivalent formulations in terms of Lagrangian and Eulerian quantities
that are linked via a transformation map where we employ the reference map, i.e. the inverse of the deformation
or flow map, as the variable to describe deformations.

In this spirit, section 2 introduces the Lagrangian and Eulerian kinematics and the GENERIC formalism aug-
mented by a brief description of thermodynamics for solid materials. Subsequently, in section 3 we present a
Lagrangian GENERIC system for thermo-viscoelastic materials and carry out a transformation to the Eulerian
setting. We complement it by examples for the energy and entropy functionals and operators, and, by fast equi-
libration of temperature with a heat reservoir, reduce the GENERIC system to a damped Hamiltonian system.
We conclude this work in section 4 with a weak formulation of the damped Hamiltonian system at the example
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of a FSI problem, which is subsequently studied in numerical simulations. This example has two main purposes:
Firstly, to show that the GENERIC structures previously introduced can be adapted to thermodynamically closed
systems (in contrast to isolated systems treated by GENERIC) and, secondly, that the use of the reference map
within this variational framework provides an alternative treatment to multiphase systems.

2 Kinematics and thermodynamics in the framework of GENERIC

We start by introducing the notations and definitions concerning the Lagrangian (reference) and the Eulerian
(actual) configuration. In Section 2.2, we proceed with a brief discussion on thermodynamics of solid materials
in connection with the previously defined quantities and ultimately we introduce the GENERIC framework.

2.1 Lagrangian and Eulerian kinematics

We consider a material that occupies in the Lagrangian or reference configuration the domain Ω̄ ⊂ Rd at time
t = 0. At any time t ∈ [0,T] the Eulerian or actual domain Ω(t) is connected to the initial data by the deforma-
tion or flow map
χχχ : [0,T] × Ω̄ → Rd such that Ω(t) = χχχ(t, Ω̄). Along with the flow map, deformations are measured
through the deformation gradient F̄ : [0,T]× Ω̄→ Rd×d

F̄ (t, x̄) := ∇̄χχχ(t, x̄) .

Clearly, for the initial datum χχχ(0, x̄) = x̄ the deformation gradient is purely the identity matrix F̄ (0, x̄) = Id.
An important role in the energy functionals, see Remark 3.3, and in the thermodynamic formalism is played by
its Jacobian V̄ := det F̄ . Lastly, the description of a particle motion in Lagrangian coordinates is completed by
its velocity field ν̄(t, x̄) = ∂tχχχ(t, x̄).

Assuming that the deformation χχχ(t, ·) is invertible for every time t ∈ [0,T], we introduce the reference map
α(t, ·) := χχχ−1(t, ·) that satisfies the identity relation

α(t,χχχ(t, x̄)) = x̄ , for any (t, x̄) ∈ [0,T]× Ω̄ . (1)

From (1) one sees that the deformation gradient is the inverse gradient of the reference map, i.e. F̄ (t, x) =(
∇α(t, x)

)−1
. Throughout this paper we will denote quantities that are “naturally” defined in Lagrangian coor-

x̄

x
Ω̄

Ω

χ(t) : Ω̄ → Ω

α = χ−1(t)

Figure 1: Schematic representation of the reference Ω̄ and actual domain Ω with the flow map χχχ and the
reference map α.

dinates with a bar, while we will drop the bar for the Eulerian ones.

2.2 Equilibrium thermomechanics

Since the GENERIC formalism relies on thermodynamic functionals and operators we first introduce some basic
notions of equilibrium thermodynamics. It originated from the study of gases or fluids, see [62] and references
therein for an historical review on the subject. One of the main observations of [66] is to identify the volume
V̄ being an extensive thermodynamic variable with the determinant of the deformation gradient V̄ := det F̄ .
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To describe a fluid rheology only volumetric changes are relevant and thus only V̄ enters to the models. In-
stead, when modelling elastic solids, also deformations beyond pure volumetric changes have to be captured.
Therefore, thermomechanical functionals and operators describing solid materials also have to include the de-
pendency on other minors of the deformation gradient F̄ = ∇̄χχχ besides the determinant. By doing so, we will
be able to treat general hyperelastic materials.

We follow the treatment of [61, 46, 25] and consider a state vector

q̄s̄ := (χχχ, c̄, s̄) (2)

formed by the vector of particle concentrations c̄ = (c̄1, . . . , c̄N ), the deformation gradient F̄ = ∇̄χχχ, and the
entropy density s̄. Throughout this paper we will use a subscript z ∈ {ū, s̄, θ̄} to stress the use of a specific
thermodynamic variable in a given state vector, function or functional, as in (2) or (3). We then define the internal
energy density of the system through an equation of state in natural variables

Ūs̄[q̄s̄] := Ūs̄(F̄ , c̄, s̄) . (3)

From the first and second law of thermodynamics we obtain the following fundamental relation between the state
variables and their conjugate

DŪs̄ = θ̄s̄Ds̄+ Σ̄el
s̄ : DF̄ +

N∑
i=1

(µ̄s̄)iDc̄i . (4)

Similar fundamental relations for solids can be found in [17, 7] and with a different strategy, introducing the
concept of thermodynamic tension, in [8]. From (4), we recover the standard definitions of temperature θ̄s̄,
chemical potential µ̄s̄ and the elastic stress tensor Σ̄el

s̄ :

θ̄s̄ :=
∂Ūs̄

∂s̄
, Σ̄el

s̄ :=
∂Ūs̄

∂F̄
, µ̄s̄ :=

∂Ūs̄

∂c̄
. (5)

This definition of elastic stress and its relation to Ūs̄ is usually used in literature as the characterizing condition
of hyperelastic materials, see [13, Ch.4]. Most of the theory of continuum mechanics of elastic bodies was
developed independently from thermodynamics, which led to the assumption of constant temperature. For this
and other practical reasons, often the Helmholtz free energy is used (or the Massieu potential, if more emphasis
on dissipative processes is desired) to design constitutive laws for elastic materials. Let us briefly recall its
definition. We define the Helmholtz free energy for the state vector q̄θ̄ = (F̄ , c̄, θ̄) in the following way:

F̄θ̄(q̄θ̄) =

∫
Ω̄

F̄θ̄[q̄θ̄] dx̄ :=

∫
Ω̄

(
Ūθ̄[q̄θ̄]− θ̄S̄θ̄[q̄θ̄]

)
dx̄ , (6)

which is the Legendre transform of the internal energy Ūs̄ wrt. the entropy s̄. By means of the standard relations
(5) we have:

∂F̄θ̄

∂θ̄
= −S̄θ̄ ,

∂2F̄θ̄

∂θ̄2
= − C̄V̄

θ̄
,

∂F̄θ̄

∂F̄
= Σ̄el ,

where C̄V̄ is the heat capacity at constant volume.

While the free energy can and should, in principle, depend arbitrarily on q̄θ̄, we propose a simplified energy
model that emphasizes the nonlinear elasticity of the system and adopts idealized assumptions for the depen-
dence on temperature and concentration. This approach follows the strategy of ideal gas relationships for the
concentration, assumes a constant (Eulerian) heat capacity, and ensures the distinction between classical ex-
tensive and intensive variables in the context of nonlinear elasticity. Accordingly, we propose the following form

F̄θ̄[q̄θ̄] :=
[
Fmech(x̄, F̄iso) + Fint

(
x̄, c̄/det(F̄ ), %̄/det(F̄ ), θ̄

)]
det(F̄ ) , (7a)
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where %̄ can be interpreted as the mass density. Its relation to the vector of concentrations c̄ will be specified
later, cf. (16). In (7), the isochoric part of the deformation gradient F̄ is defined as F̄iso = F̄ /(det F̄ )1/d for
spatial dimension d so that det(F̄iso) ≡ 1. Here, elastic contributions (shear forces) are encoded in Fmech, and
the remaining thermal, chemical, and volumetric contributions come from the internal energy Fint. We further
distinguish in Fint contributions due to elasticity and due to the diffusive species by

Fint(x̄, c̄/det F̄ , %̄/det F̄ , θ̄) := F solid
int (x̄, %̄/det F̄ , θ̄) + F diff

int (x̄, c̄/det F̄ , θ̄). (7b)

A somewhat idealized choice is

F solid
int (x̄, %̄

det F̄
, θ̄) := Csolidθ̄

[
ln

(
θ̄

θ̄ref

)
− 1

]
+
K%̄2

2

(
det F̄

%̄
− 1

%̄

)2

, (7c)

F diff
int (x̄, c̄

det F̄
, θ̄) :=

c̄

det F̄
kB θ̄

[
ln

(
c̄

det F̄
λ3
θ̄

)
− 1

]
, (7d)

with the (thermal) de Broglie wavelength λθ̄ ∼ θ̄−1/2, and further constants Csolid,K, kB > 0. Using the
above definitions, this gives rise to the simplified additive heat capacity

C̄V̄ = Csolid det(F̄ ) + 3
2kB c̄.

This implies that C̄V̄ is an extensive quantity, i.e., it scales 1-homogeneously with the other extensive quantities
V̄ = det F̄ and c̄. For dilute concentration the heat capacity is usually dominated by Csolid det(F̄ ), which
leads to a constant Eulerian heat capacity CV = Csolid. The above construction relates the Eulerian free
energy to its Lagrangian version (7) by

Fθ̄[qθ] = F̄θ̄[q̄θ̄(qθ)]/ det(F ) , where qθ := (α, c, θ),

is the Eulerian state vector, where we define q̄θ̄(qθ) := (α, cV, θ). The origin of the relation to the Lagrangian
state vector q̄θ̄ via a transformation will be explained in section 3.2. With % = %̄ ◦α/V we then have

Fθ(qθ) =

∫
Ω

Fθ[qθ] dx, Fθ[qθ] = Fmech(α,Fiso) + Fint(α, c, %, θ). (8)

2.3 Short introduction to GENERIC

The GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) formalism was firstly
introduced by Grmela and Öttinger in [24, 50]. This variational approach aims to describe thermodynamically
isolated systems by means of a state space Q̄, usually a Banach space with dual Q̄∗ and we will denote with
〈·, ·〉 the canonical dual pairing between Q̄∗ and Q̄. The framework is based on two thermodynamic potentials,
the total energy Ē : Q̄ → R and the total entropy S̄ : Q̄ → R of the system, and two geometric struc-
tures J̄ and K̄. The geometric structures give rise to two bilinear forms of different nature that characterize the
reversible, or Hamiltonian, dynamics and the irreversible, or dissipative, dynamics of the system. The Poisson
structure J̄(q̄) : Q̄∗ → Q̄ is antisymmetric, i.e. J̄(q̄) = −J̄∗(q̄) for all q̄ ∈ Q̄, and satisfies Jacobi’s identity,
whereas the Onsager operator K̄(q̄) : Q̄∗ → Q̄ is symmetric, i.e. K̄(q̄) = K̄∗(q̄) for all q̄ ∈ Q̄, and posi-
tively semidefinite, i.e.

〈
ξ̄, K̄(q̄)ξ̄

〉
≥ 0 for all ξ̄ ∈ Q̄∗. The triplet (Q̄, Ē , J̄) forms a Hamiltonian system for

reversible processes, whereas the triplet (Q̄, S̄ , K̄) forms an Onsager system for irreversible dissipative pro-
cesses. A GENERIC quintuple (Q̄, Ē , S̄ , J̄, K̄) couples the two via the so-called Non-Interaction Conditions
(NIC), that can be stated as follows

J̄(q̄)DS̄ (q̄) = 0 = K̄(q̄)DĒ (q̄) (9a)
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together with the mass conservation conditions

J̄(q̄)DM̄ (q̄) = 0 = K̄(q̄)DM̄ (q̄) , (9b)

for the total mass of the system M̄ : Q̄ → R. Altogether, (9a) and (9b) are called degeneracy conditions.

Above in (9) the letter D denotes the Fréchet derivative of the functionals, which is, for a functional Ā : Q̄ → R
defined by

〈DĀ (q̄), ξ̄〉 := lim
0<h→0

1
h

(
Ā (q̄ + hξ̄)− Ā (q̄)

)
, (10)

where DĀ (q̄) ∈ Q̄∗. We similarly introduce the Fréchet derivative DT(q̄) for general maps T : Q̄ → Q.
Throughout this paper we work with integral functionals Ā : Q̄ → R that act on the state q̄ ∈ Q̄. The state is
a map q̄ : [0,T]× Ω̄→ Rk, k ∈ N. With a density Ā : Ω̄× Rk × Rk×d → R, the integral functional Ā is
given by

Ā (q̄) :=

∫
Ω̄

Ā [q̄] dx̄ .

where we used the abbreviation Ā [q̄] := Ā (x̄, q̄,∇q̄) to simplify notation. Based on this representation, we
will use for both the functional derivative (10) and for the derivative of the density the symbol D, so that for all
q̄, ξ̄ ∈ Q̄ 〈

DĀ (q̄), ξ̄
〉

=

∫
Ω̄

DĀ [q̄] · ξ̄ dx̄ , where

DĀ [q̄] · ξ̄ =
(
∂q̄Ā (x̄, q̄,∇q̄)−∇ · ∂∇q̄Ā (x̄, q̄,∇q̄)

)
· ξ̄ .

(11)

Based on above definitions for a GENERIC system (Q̄, Ē , S̄ , J̄, K̄) the evolution of a state vector q̄ : [0,T]→
Q̄ is governed by the following equation

∂tq̄ = J̄(q̄)DĒ (q̄) + K̄(q̄)DS̄ (q̄) . (12)

Conditions (9) together with the properties of the operators J̄ and K̄ ensure the compatibility of the system with
the laws of thermodynamics. In fact, by assuming that the chain rule holds true, for every solution to (12) one
has the following inequality for the time derivative of the entropy

d

dt
S̄ (q̄(t)) =

〈
DS̄ (q̄), ∂tq̄

〉
=
〈
DS̄ (q̄), J̄(q̄)DĒ (q̄) + K̄(q̄)DS̄ (q̄)

〉
=
〈
DĒ (q̄),−J̄(q̄)DS̄ (q̄)

〉
+
〈
DS̄ (q̄), K̄(q̄)DS̄ (q̄)

〉
=
〈
DS̄ (q̄), K̄(q̄)DS̄ (q̄)

〉
≥ 0 .

Analogously, one can prove that the total energy of the system is conserved for a solution of (12), i.e.,

d

dt
Ē (q̄(t)) = 0 .

3 Nonequilibrium thermomechanical model with diffusion

In this section we present a GENERIC model for thermo-viscoelastic materials. Firstly, we provide a Lagrangian
formulation (Q̄, Ē , S̄ , J̄, K̄). Then we define Eulerian variables and perform a transformation of the functionals
and related geometric structures resulting in a corresponding Eulerian GENERIC system (Q,E ,S , J,K).

One of the main goals of this article is to construct two equivalent formulations of the physical system, one in
terms of the Lagrangian or reference configuration and the other in terms of the Eulerian or actual configuration
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∂tq̄ = J̄(q̄)DĒ (q̄) + K̄(q̄)DS̄ (q̄) q̄(t) ∈ Q̄

∂tq = J(q)DE (q) + K(q)DS (q) q(t) ∈ Q

solution

L TLE

solution

Figure 2: Diagram showing the mapping relations between two GENERIC systems (Q̄, Ē , S̄ , J̄, K̄) and
(Q,E ,S , J,K) and between their respective solutions q̄, q.

within the GENERIC framework. Here we collect notions and results about transformations and changes of
coordinates for GENERIC systems that we will use later without any further proof. A detailed discussion and
its relation to thermodynamics can be found in [66]. The family of relevant transformations consists of Fréchet
differentiable maps between two state spaces

TLE : Q̄ → Q with Fréchet derivative L(q̄) := DTLE(q̄) . (13)

Given two GENERIC systems (Q̄, Ē , S̄ , J̄, K̄), (Q,E ,S , J,K), we say that the closure conditions are sat-
isfied if

E (TLE(q̄)) = Ē (q̄) , S (TLE(q̄)) = S̄ (q̄) , M (TLE(q̄)) = M̄ (q̄) (14a)

J(TLE(q̄)) = L(q̄)J̄(q̄)L∗(q̄) , (14b)

K(TLE(q̄)) = L(q̄)K̄(q̄)L∗(q̄) , (14c)

with L∗(q̄) the adjoint operator of L(q̄). This transformation mechanism is shown in the following diagram
2, which illustrates the existence of a transformed structure (Q,E ,S , J,K) whose solutions agree with the
mapped solutions q(t) = TLE

(
q̄(t)

)
.

3.1 Lagrangian GENERIC system

States. We consider a time-evolving thermo-viscoelastic solid material in the reference configuration, described
by the vector of state variables

q̄ :=


χχχ : Ω̄→ Rd
m̄ : Ω̄→ Rd
c̄ : Ω̄→ RN
θ̄ : Ω̄→ R

 ∈ Q̄ , (15)

with the deformationχχχ from Sec. 2.1, the linear momentum m̄, the vector of concentrations c̄ ofN species and
the temperature θ̄. We assume the existence of a constant N -tuple of molar masses M ∈ RN , such that the
mass density %̄ : Ω̄→ R can be expressed as a function of c̄ via

%̄(t, x̄) = %̄0(x̄) + c̄(t, x̄) ·M . (16)

Condition (9b) imposes a strict restriction on the evolution of the function c̄ and its relation withM . In fact, the
operators J̄ and K̄ have to be constructed in such a way that (9b) is satisfied, which in our barycentric setting
enforces the condition c̄(t, x̄) ·M = 0 for any (t, x̄) ∈ [0,T]× Ω̄.

The linear momentum relates to the velocity field by

m̄(t, x̄) := %̄(t, x̄)ν̄(t, x̄) for every (t, x̄) ∈ [0,T]× Ω̄ .

The choice of the temperature as the “thermodynamic” variable is clearly not exclusive but it is made here in
order to compare our result with the literature and to be closer to thermodynamic potentials that are used in this
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scenario, see eq. (7) and Remark 3.2, Remark 3.3. In the Lagrangian and Eulerian formulation of this system
we will not perform a change of the thermodynamic variable to ū or s̄ and thus we drop the θ̄-subscript from the
state variable from now on.

Driving functionals. We consider the total energy functional Ē : Q̄ → R as the sum of the kinetic energy
K̄ : Q̄ → R and the internal internal energy Ū : Q̄ → R, i.e.,

Ē (q̄) := K̄ (q̄) + Ū (q̄) with (17a)

K̄ (q̄) :=

∫
Ω̄

K̄ [q̄] dx̄ =

∫
Ω̄

|m̄|2

2%̄(t, x̄)
dx̄ kinetic energy, (17b)

Ū (q̄) :=

∫
Ω̄

Ū [q̄] dx̄ =

∫
Ω̄

Ū (x̄, F̄ , c̄, θ̄) dx̄ internal energy. (17c)

We emphasize here the θ̄-dependence of the internal energy density Ū , in view of the computation of the driving
force DĒ and the verification of the non-interaction conditions (9a). Moreover, we highlight the dependence of
Ū on the deformation gradient F̄ , since this is a feature of solid materials, as discussed previously. Similarly to
the total energy, we consider an entropy functional of the following form:

S̄ (q̄) :=

∫
Ω̄

S̄ [q̄] dx̄ =

∫
Ω̄

S̄ (x̄, F̄ , c̄, θ̄) dx̄ . (18)

We now compute the Fréchet derivatives for the densities of the functionals in (17)

DĒ (q̄) =


DχχχŪ [q̄]
Dm̄K̄ [q̄]

Dc̄(K̄ [q̄] + Ū [q̄])
Dθ̄Ū [q̄]

 =


−∇̄ ·

(
∂F̄ Ū

)
ν̄

− |ν̄|
2

2 + ∂c̄Ū
C̄V̄

 , (19a)

where C̄V̄ is the heat capacity. For the total entropy in (18) we get

DS̄ (q̄) =


DχχχS̄ [q̄]
Dm̄S̄ [q̄]
Dc̄S̄ [q̄]
Dθ̄S̄ [q̄]

 =


−∇̄ ·

(
∂F̄ S̄

)
0

∂c̄S̄
C̄V̄
θ̄

 . (19b)

Geometric structures. For reversible dynamics, we consider the Poisson operator

J̄(q̄) :=


0 Id 0 0

−Id 0 0 J̄m̄θ̄

0 0 0 0

0 J̄θ̄m̄ 0 0

 , with

J̄m̄θ̄(q̄)[η̄θ̄] := −∇̄ ·
(
η̄θ̄θ̄C̄

−1
V̄
∂F̄ S̄

)
, J̄θ̄m̄(q̄)[η̄m̄] := −θ̄C̄−1

V̄
∇̄η̄m̄ : ∂F̄ S̄ ,

(20)

and where η̄ = (η̄χχχ, η̄m̄, η̄c̄, η̄θ̄) is used here as a placeholder for the functional derivatives. This operator
conforms with the non-canonical reversible operator for fluids and it can be derived from the canonical Poisson
operator, e.g. see [44], by means of the transformation and closure conditions (14b), when mapping the entropy
s̄ to the temperature θ̄. A detailed transformation is carried out in [66]. We can readily verify that J̄ is linear
and skew-symmetric, and that it satisfies the non-interaction conditions (9a), i.e. J̄(q̄)DS̄ (q̄) = 0, where one
needs to use the thermodynamic relation ∂θ̄S̄ = C̄V̄ /θ̄.

The irreversible dynamics is characterized in our considered problem by three processes: heat conduction,
diffusion of species, and viscous dissipation in the solid. In order to write a suitable operator we exploit the
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additive property of the Onsager systems. As introduced for reaction diffusion systems [39], we split the Onsager
operator K̄ into contributions and write K̄(q̄) = K̄heat(q̄) + K̄diff(q̄) + K̄vi(q̄). Heat conduction is modelled

K̄heat(q̄) :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 K̄heat

θ̄θ̄
(q̄)

 , where (21a)

K̄heat
θ̄θ̄ (q̄)[η̄θ̄] := − 1

C̄V̄ (q̄)
∇̄ ·
[
Cof(F̄ )θ̄2k̄heat(q̄)F̄−>∇̄

(
η̄θ̄
C̄V̄

)]
, (21b)

with k̄ = k̄heat(q̄) > 0 and the cofactor matrix Cof(F̄ ) = det(F̄ )F̄−>. The dependence on F̄ will become
clearer later, when mapping to Eulerian coordinates, since it will be used to relate Lagrangian gradient ∇̄ to
Eulerian∇. Symmetry and positive semi-definiteness are readily verified and by setting η̄θ̄ = Dθ̄E ≡ ∂θ̄Ū =
C̄V̄ , one sees immediately that the NIC K̄heatDE ≡ 0 is satisfied.

The contribution due to diffusion of species, although different in nature, shares a structure similar to (21). We
set

K̄diff(q̄) :=


0 0 0 0
0 0 0 0
0 0 K̄diff

c̄c̄ (q̄) 0
0 0 0 0

 , (22a)

K̄diff
c̄c̄ (q̄) :=− ∇̄ ·

[
M̄(q̄)∇̄ (η̄c̄) F̄

−1Cof(F̄ )
]
. (22b)

Here M̄(q̄) ∈ RN×N is the mobility matrix. In order to ensure mass conservation and (9a) we ask the N -
tuple of molar masses M to lie in the kernel of M̄(q̄). The construction of diffusion coefficients satisfying this
requirement is explored in [66].

The viscous dissipation operator together with the driving force DS̄ generates the viscous stress Σ̄vi. How-
ever, finding a physically acceptable viscous stress can be an insidious task, as pointed out in [5]. We tackle
this problem similarly to the heat conduction and construct the viscous Onsager operator by "pulling back"the
Eulerian Onsager operator for a Stokes fluid, which is defined e.g. in [51, Ch.4.6]. We recall the notation for
the symmetric gradient ∇̄sā := 1

2(∇̄āF̄−1 + F̄−>∇̄ā>) and introduce a positive semi-definite fourth-order
tensor Λ̄(q̄). We then represent the viscous Onsager operator K̄vi in the following block-matrix structure:

K̄vi(q̄) :=


0 0 0 0
0 K̄vi

m̄m̄(q̄) 0 K̄vi
m̄θ̄

(q̄)

0 0 0 0
0 K̄vi

θ̄m̄
(q̄) 0 K̄vi

θ̄θ̄
(q̄)

 , (23a)

K̄vi
m̄m̄(q̄)[η̄m̄] := −∇̄ ·

[
θ̄Λ̄(q̄) : ∇̄sη̄m̄Cof(F̄ )

]
, (23b)

K̄vi
m̄θ̄(q̄)[η̄θ̄] := ∇̄ ·

[
θ̄Λ̄(q̄) : ∇̄sν̄Cof(F̄ )

η̄θ̄
C̄V̄

]
, (23c)

K̄vi
θ̄m̄(q̄)[η̄m̄] := − 1

C̄V̄
∇̄sν̄ : θ̄Λ̄(q̄) : ∇̄sη̄m̄V̄ , (23d)

K̄vi
θ̄θ̄(q̄)[η̄θ̄] :=

η̄θ̄
C̄V̄
∇̄sν̄ : θ̄Λ̄(q̄) : ∇̄sν̄ V̄ . (23e)

The operator so defined satisfies the symmetry condition, i.e., K̄ ≡ K̄∗ and the positive semi-definiteness, i.e.,〈
η̄, K̄viη̄

〉
≥ 0 for all η̄ ∈ Q̄∗. As before, by taking η̄m̄ = Dm̄Ē ≡ ν̄ and η̄θ̄ = Dθ̄Ē ≡ C̄V̄ we check that

the non-interaction condition K̄viDĒ ≡ 0 is satisfied. In order to obtain the Stokes viscosity, we choose Λ̄ as

Λ̄(q̄) := 2λ̄I4d + ξ̄
(
I2d ⊗ I2d

)
, (23f)

where λ̄ > 0 and ξ̄+ 2λ̄
d > 0 are the shear and bulk viscosity, respectively, and might be state-dependent. The

fourth- and second-order identity tensors are denoted by I4d and I2d. With this choice of Λ̄, the viscous Onsager
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operator for fluids is retrieved. The product of a fourth order tensor A with a second order tensor B gives the
second-order tensor with components in the following sense (A : B)ij = AijklBkl.

By collecting the above definitions we have a GENERIC quintuple (Q̄, Ē , S̄ , J̄, K̄) and by applying the oper-
ators (20)-(23) to the driving forces (19), the evolution law ∂tq̄ = J̄(q̄)DĒ (q̄) + K̄(q̄)DS (q̄) results in the
PDE-system

∂tχχχ =
m̄

%̄
, (24a)

∂tm̄ = ∇̄ ·
(
Σ̄el + Σ̄vi

)
− W̄ , (24b)

∂tc̄ = −∇̄ ·
[
Cof(F̄ )M̄F̄−>∇̄(∂c̄S̄ )

]
(24c)

C̄V̄ ∂tθ̄ = θ̄∇̄ν̄ : ∂F̄ S̄ + ∇̄sν̄ : Σ̄viF̄> + ∇̄ ·
(

Cof(F̄ )k̄F̄−>∇̄θ̄
)
, (24d)

where Σ̄vi := Λ̄∇̄sν̄Cof(F̄ ) is the viscous stress and Σ̄el := ∂F̄ (Ū − θ̄S̄ ). By including the second
gradient of the deformationχχχ, i.e., ∇̄F̄ in the entropy and energy we would extend our model to the description
of the so-called 2nd-grade non-simple materials and by taking the overdamped limit we recover the equations
and the structures presented in [41].

Remark 3.1 (Frame indifference of stresses). One of the requirements for having a physically consistent model
is for the elastic and viscous stresses to be invariant under rigid motions. For the elastic stress tensor Σ̄el,
this is ensured if, for example, the internal energy Ū and the entropy S̄ depend on F̄ only through the right
Cauchy-Green tensor F̄>F̄ , see [13, Theorem 4.2-1] for more details. For the viscous stress tensor being
frame indifferent is equivalent to satisfy the following condition for some Σ̃ : Rd×d × Rd×d → Rd×d, cf. [40]:

Σ̄vi(F̄ , ∂tF̄ ) = F̄ Σ̃(F̄>F̄ , F̄>∂tF̄ + ∂tF̄
>F̄ ) .

For dissipation structures as in (23f) one can see that this condition is satisfied for Σ̃(F̄ , ∂tF̄ ) := Λ̄(q̄)(F̄>F̄ )−1 1
2(F̄>∂tF̄+

∂tF̄
>F̄ )(F̄>F̄ )−1

√
det(F̄>F̄ ) where we recall that ∇̄ν̄ = ∂tF̄ . ∗

Remark 3.2 (Hyperelastic material). In this setting, the dependence of Ū on F̄ is the main distinguishing trait
in modelling elastic responses of the solid material. Following [13, Ch. 4], the so-called Ogden’s materials are
described by a Helmholtz free energy, whose mechanical contribution is:

F̄ (F̄ ) :=

M∑
i=1

αitr(F̄
>F̄ )γi/2 +

N∑
j=1

βjtr(Cof(F̄>F̄ ))(F̄>)δj/2 + κ(det F̄ ) ,

where αi > 0, βj > 0, γi ≥ 1, δj ≥ 1, and κ : (0,+∞) → R is a convex function satisfying κ(y) → +∞
as y → 0+ and subjected to suitable growth as y → +∞. Other types of hyperelastic materials are the
compressible Mooney-Rivlin materials, whose energy can be expressed as follows

F̄ (F̄ ) := αtr|F̄ |2 + β|Cof(F̄ )|2 + κ(det F̄ ) ,

where κ(y) = cy2 − d log(y), c ≥ 0, d ≥ 0. If β = 0, then one recovers an equation for a compressible
neo-Hookean material. With the function κ(·) related to volumetric variations and c = 0, d = 0 one recovers
the incompressible limit.

Remark 3.3 (Pure volumetric deformation). Murnaghan’s equation of state is widely used in geosciences, see
e.g. [26], to model the behaviour of a solid under high pressures and it relates the pressure π̄ to the volume V̄ ,
the temperature θ̄ and the bulk modulus κθ̄ through the following equation of state

π̄(V̄ , θ̄) =
κθ̄(θ̄)

κ′
θ̄

[(
V̄ref(θ̄)

V̄

)∂π̄κθ̄
− 1

]
(25)
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with V̄ref(θ̄) being a reference value of the volume obtained from

V̄ref(θ̄) = V̄ (π̄ref , θ̄ref)
[
1 + a(θ̄ − θ̄ref)− 20a(

√
θ̄ −

√
θ̄ref)

]
,

where π̄ = 1bar, θ̄ref = 298K and a > 0. We recall that the bulk modulus is defined through the following
standard thermodynamic relation

κθ̄ := −V̄
(
∂π̄

∂V̄

)
θ̄

.

If we assume ∂π̄κθ̄ to be constant (usually one has ∂π̄κθ̄ ≈ 4) then the equation of state (25) is induced by a
free energy density of the following type

F̄ (V̄ , θ̄) =
κθ̄(θ̄)

∂π̄κθ̄
V̄

[
1

∂π̄κθ̄ − 1

(
V̄ref

V̄

)∂π̄κθ̄
+ 1

]
− κθ̄(θ̄)V̄ref(θ̄)

∂π̄κθ̄ − 1
. (26)

This fact can be easily checked by computing the pressure, which is given as the derivative of the free energy
density F̄ = F̄ (V̄ , θ̄)

π̄ = −∂F̄

∂V̄
.

Let us remark that this energy density involves the deformation gradient only through purely volumetric contri-
butions via V̄ = det F̄ .

3.2 Eulerian GENERIC system (Q,E ,S , J,K)

In this subsection we consider the GENERIC system (Q̄, Ē , S̄ , J̄, K̄) previously defined in Section 3.1 and
perform a change of variables from Lagrangian to Eulerian coordinates using the map TLE introduced in (13).
We will use the reference mapα defined in (1) as one of the state variables. We recall thatα(t, ·) is the inverse
of the deformation χχχ(t) at time t, i.e., α(t,χχχ(t, x̄)) = x̄ for every (t, x̄) ∈ [0,T] × Ω̄. Eulerian fields will
be denoted without a bar. For intensive variables the Eulerian fields result by simply composing the Lagrangian
field withα, as for F = F̄ ◦α, V = V̄ ◦α, ν = ν̄ ◦α. For extensive variables the transformation additionally
involves a division by V̄ , as can be seen in particular in equations (27b) and (27c). The new Eulerian state
vector q is defined through the map TLE : Q̄ → Q

q =


α : Ω→ Rd
m : Ω→ Rd
c : Ω→ RN
θ : Ω→ R

 = TLE(q̄) ∈ Q , where (27a)

m =
m̄

V̄
◦α , (27b)

c =
c̄

V̄
◦α , (27c)

θ = θ̄ ◦α . (27d)

Here, based on the results of [66], momentum and concentrations are mapped as extensive variables, while
the temperature as an intensive variable is transformed by simply applying the reference map. Since we are not
going to perform any further change of variables, we omit the subscript that would mark the dependence on the
temperature θ, as previously introduced in (2) and below. One can verify that the driving functionals (17) and
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(18) indeed satisfy the closure conditions (14a) under the mapping (27):

E (q) := K (q) + U (q) with (28a)

K (q) :=

∫
Ω

|m|2

2%
dx , where % =

%̄ ◦α
V

+ c ·M , kinetic energy, (28b)

U (q) :=

∫
Ω

U (α,F , c, θ) dx internal energy, (28c)

S (q) :=

∫
Ω

S (α,F , c, θ) dx entropy, (28d)

where Ū (α,F , cV, θ) = U (α,F , c, θ)V and S̄ (α,F , cV, θ) = S (α,F , c, θ)V , cf. with the free en-
ergy (8). For the densities of the internal energy U and entropy S we have highlighted theα-dependency and
distinguished it from F . This distinction will simplify the computation of their functional derivative and will clarify
that only the derivatives of these functionals wrt. F contribute in the final PDE system. Furthermore, observe
that the third component of U and S is c̄ = cV from (27c). The driving forces are given by the Fréchet
derivatives of (28):

DE [q] =

(
Dα

( |m|
2%2

+
Ū

V

)
,ν,−|m|

2

2%2
M + ∂c̄Ū ,

∂θŪ

V

)>
, where c̄ = cV (29a)

DS [q] =

(
DαS , 0, ∂c̄S̄ ,

CV
θ

)>
. (29b)

Following (13) and below, the Lagrangian rates ∂tq̄ are mapped through the derivative of the Lagrangian-
Eulerian transformation:

DTLE(q̄) : Q̄ → Q , DTLE(q̄) =


−∇α 0 0 0

−∇ · (m̄⊗�) �
V̄

0 0

−∇ · (c̄⊗�) 0 �
V̄

0

−� · ∇θ̄ 0 0 1

 . (30a)

This mapping induces the following relations between Lagrangian ∂tq̄ and Eulerian velocities ∂tq:
∂tα
∂tm
∂tc
∂tθ

 = DTLE(q̄)


∂tχχχ
∂tm̄
∂tc
∂tθ̄

 =


−(∇α)∂tχχχ

−V̄ −1∂tm̄−∇ ·
(
V̄ −1m̄⊗ ∂tχχχ

)
−V̄ −1∂tc̄−∇ ·

(
V̄ −1c̄⊗ ∂tχχχ

)
∂tθ̄ − ∂tχχχ · ∇θ̄

 , (30b)

where the Eulerian gradient is acting on Lagrangian variables at the point x̄ = α(x). The adjoint operator
DTLE

∗ : Q∗ → Q̄∗ maps driving forces and can be obtained by integration by parts of the expression
〈η,DTLEv̄〉Q = 〈DTLE

∗η, v̄〉Q̄ valid for any sufficiently smooth η ∈ Q∗ and any v̄ ∈ Q̄, see (11) for the
dual pairing. Using DTLE from (30a) this leads to

DTLE
∗(q̄) =


−V̄∇α> (∇̄�)>F̄−1m̄ (∇̄�)>F̄−1c̄ −�V̄ F̄−>∇̄θ̄

0 � 0 0
0 0 � 0
0 0 0 V̄�

 . (30c)

The transformed geometric structures J(q),K(q) : Q∗ → Q are directly computed using the transformation
operators DTLE,DTLE

∗ as follows

J(q) =DTLE(q̄)J̄(q̄)DTLE
∗(q̄)

=


0 −∇α 0 0

∇α> −(∇�)>m−∇· (m⊗�) −(∇�)>c ∇θ+ 1
V J̄

m̄θ̄[�V ]
0 −∇·(c⊗�) 0 0

0 −� · ∇θ + J̄θ̄m̄ 0 0

 , (31)
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where the momentum-temperature related entries are obtained from (20) in terms of

1

V
J̄m̄θ̄[ηθV ] = −∇ ·

(
θ

C̄V
ηθ∂FSF>

)
, J̄θ̄m̄[ηm] = − θ

CV
∇ηm :

∂FSθF
−>

V

by exploiting Piola’s identity ∇̄ · (V̄ F̄−>) = 0 as well as the transformation rule (∇̄ · Ā)F̄−> = ∇ · (Ā ◦α)
for any Ā ∈ Rd×d.

Similarly, we obtain or the Onsager operator

K(q) = DTLE(q̄)K̄(q̄)DTLE
∗(q̄) =


0 0 0 0
0 Kmm(q) 0 Kmθ(q)
0 0 Kcc(q) 0
0 Kθm(q) 0 Kθθ(q)

 , (32a)

where the entries have been transformed to

Kmm(q)ηm = −∇ · [θΛ(q)∇sηm] , (32b)

Kmθ(q)ηθ = ∇ ·
[
θΛ(q)

ηθ
CV
∇sν

]
, (32c)

Kcc(q)ηc = −∇ · (M(q)ηc) , (32d)

Kθm(q)ηm = − θ

CV
∇sν : Λ(q) :

ηθ
CV
∇sηm , (32e)

Kθθ(q)ηθ =
θ

CV
∇sν : Λ(q) : ∇sν −

1

CV
∇ ·
(
kheat(q)θ2∇ ηθ

CV

)
. (32f)

It can be readily checked that the NIC are satisfied and thus the transformation has led to a GENERIC quintuple
(Q,E ,S , J,K) in the Eulerian frame. We obtain the evolution by replacing η in (32) with η = DS [q] from
(29b) and correspondingly let DE [q] from (29a) act on the Poisson structure (31). This leads to PDE system

∂tα+ (∇α)ν = 0 , (33a)

∂tm+∇ · (m⊗ ν) = ∇ ·
(
σel + σvi

)
, (33b)

∂tc+∇ · (c⊗ ν) = −∇ ·
(
M∂c̄S̄

)
(33c)

CV (∂tθ + ν · ∇θ) = −θ∇ν : ∂F S̄
F−>

V
+∇sν : σvi +∇ · (kheat∇θ) , (33d)

with σel = ∂F (Ū − θS̄ )F>V −1 and σvi = Λ : ∇sν . (33e)

where the viscous contribution to the Cauchy stress is generated by σvi = Kmθ(q)ηθ with ηθ = CV /θ. In
order to obtain (33b) some non-trivial computations are involved, which we explain in the following. For this, we
look more detailed at the terms that arise by the computation of the second component (J(q)DE [q])2 with
DE [q] from (29a) and the Poisson operator J(q) from (31). In particular, it is

(J(q)DE [q])2

=

(
∇α>∂α

(
|m|2

2%

)
−
(
∇m
%

)>
m−∇ ·

(
m⊗ m

%

)
+

(
∇|m|

2

2%2
M

)>
c

)

+

(
F−>Dα

Ū

V
−∇(∂c̄Ū )>c+

∂θŪ

V
∇θ −∇ ·

(
θ∂θŪ

C̄V

∂F S̄

V
F>
))

,

(34)

where we have used that ν = m/% as well as∇α = F−1. We will verify now that the first term on the right-
hand side of (34) gives the transport term ∇ · (m⊗ ν) in the momentum balance (33b) and that the second
term on the right-hand side of (34) results in the elastic part σel of the Cauchy stress given in (33e).
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Indeed, from the first term on the right-hand side of (34) we calculate the transport term∇·(m⊗ ν) as follows:

∇α>∂α
(
|m|2

2%

)
−
(
∇m
%

)>
m−∇ ·

(
m⊗ m

%

)
+

(
∇|m|

2

2%2
M

)>
c

= −F
>

V

|m|2

2%2
∂α%̄0 +∇

(
m

%

)> m
%

%̄0

V
+
F>

V

|m|2

2%2
∂α%̄0

−
(
∇m
%

)>
m−∇ ·

(
m⊗ m

%

)
+

(
∇m
%

)> m
%

(M · c) = −∇ · (m⊗ ν) ,

which then moves with minus to the left-hand side of (33b). In the calculation above we have used Piola’s identity
in Eulerian coordinates∇ · (F>V −1) = 0, the definition of % and the relation ν = m%−1.

To see that the elastic part σel of the Cauchy stress in (33b) arises from the second term on the right-hand side
of (34) we calculate

F−>Dα
Ū

V
−∇(∂c̄Ū )>c+

∂θŪ

V
∇θ −∇ ·

(
θ∂θŪ

C̄V

∂F S̄

V
F>
)

−
∑
k

ck∇∂c̄kŪ +
∂θŪ

V
∇θ −∇ ·

(
θ
∂F S̄

V
F>
)

= F−>
∂αŪ

V
+∇ · (∂F Ū

V
F>) +

∑
i,j

∂Fij Ū

V
∇Fij +

∑
k

∇(∂c̄kŪ ckV )

V
− ∇Ū

V

−
∑
k

ck∇∂c̄kŪ +
∂θŪ

V
∇θ −∇ ·

(
θ
∂F S̄

V
F>
)

= ∇ ·
(
∂F
(
Ū − θS̄

)
F>V −1

)
= ∇ · σel .

Above, we explicitly computed DαU and exploited ∂θU = C̄V . We have also repeatedly used the Piola’s
identity in Eulerian coordinates∇ · (F>V −1) = 0, and collect all terms that are generated by V −1∇U .

3.3 Damped Hamiltonian limit

The GENERIC formalism was introduced to describe isolated systems, i.e., systems with no exchange of mass
or energy with the surroundings. Yet, the geometric structures and thermodynamic potentials presented here
can be adapted to the case of closed system, i.e., systems that exchange heat/energy but no mass with the
surroundings. Following the work of Mielke [38] we show that a damped Hamiltonian system arises by coupling
the GENERIC system with a heat bath and in particular that the corresponding evolution equation has a similar
structure as the GENERIC evolution equation (12).

To do so, we consider a GENERIC quintuple (Q,E ,S , J,K) and we split the state vector in order to highlight
the thermodynamic variable in last position qz = (w, z), where z ∈ {e, s, θ} is a placeholder for the total
energy e, the total entropy s or the temperature θ while w collects all remaining variables; cf. (27) where
w = (α,m, c) and z = θ. We highlight that for z = e, resp. z = s, the total energy, resp. entropy, of the
system is simply Ee(qe) :=

∫
Ω e dx, resp. Ss(qs) :=

∫
Ω s dx, which produces the driving force

DEe(qe) = (0, 1)> , resp. DSs(qs) = (0, 1)> .

This choice of thermodynamic variables simplifies the implementation of the non-interaction conditions (9a),
Js(qs)DSs(qs) ≡ 0, Ke(qe)DEe(qe) ≡ 0. This can be ensured by the two geometric operators Js =(
Jww Jws
Jsw 0

)
and Ke =

(
Kww Kwe
Kew Kee

)
, where the off-diagonal entries are a combination of first and

second order differential operators and the entry Kee relates to heat conduction processes, cf. (32f). We refer
to [66] for more examples.
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For z ∈ {e, s} , we now consider the two transformations

Tz : Qz → Qθ , qz = (w, z) 7→ q = qθ = (w, θ) ,

that map the total energy and total entropy to the temperature. Similarly to (30a) and (30c), their Fréchet deriva-
tives DTz(q) = Lz(q) and adjoints L∗z(q) are given by

Lz(q) = DTz(q) :=

(
Iw 0

Dwz(q) ∂θz(q)

)−1

=

(
Iw 0

−Dwz(q)/∂θz(q) 1/∂θz(q)

)
, (35)

L∗z(q) = DT∗z(q) :=

(
Iw −D∗wz(q)/∂θz(q)
0 1/∂θz(q)

)
. (36)

Here, in contrast to (30a) and (30c), we have represented these operators in terms of the variables of the image
q = qθ. Given a GENERIC system written in terms of q = qθ, we consider the closure conditions (14) applied
to the GENERIC evolution equation

∂tq = Ls(q)Js(q)L∗s(q)DE (q) + Le(q)Ke(q)L∗e(q)DS (q) , (37)

By applying the adjoint DT∗z to the driving forces, one can see that, for the remaining variablesw the Helmholtz
free energy and the Massieu potential are the thermodynamic driving potentials:

DT∗s(q)DE [q] =

(
DwE [q]− ∂θE

∂θS
DwS [q]

∂θE
∂θS

[q]

)
, (38a)

DT∗e(q)DS [q] =

(
DwS [q]− ∂θS

∂θE
DwE [q]

∂θS
∂θE

[q]

)
. (38b)

In fact, we recall that the Gibbs relation implies ∂θE /∂θS = θ and that the Helmholtz free energy is obtained
from a Legendre transformation of the total energy resulting in the densities F = E − θS . Hence, the first
entry of (38a) can be interpreted as the derivative of the Helmholtz free energy density F with respect to w,
while equation (38b) presents the derivative of the so-called Massieu potential M = −θ−1F = S − θ−1E .
Overall, equation (37) can be rewritten as:(

∂tw
∂tθ

)
=

(
Jww JwS

−DwS
∂θS

Jww + JSw
∂θS

−DwS
∂θS

JwS

)(
DwF
θ

)
+

(
Kww Kwe

−DwE
∂θE

Kww + Kew
∂θE

−DwE
∂θE

Kwe + Kee
∂θE

)(
−DwF/θ

1/θ

)
. (39)

Observe that the operators so derived do not satisfy the properties required for a Poisson structure J or an
Onsager operator K. We further assume that the system is in thermal equilibrium, i.e. θ ≡ θ∗ ∈ (0,∞). This
procedure can be done in different ways: by adding a further dissipative contribution to the operators, see [38],
by coupling the system with an external heat bath resulting in independent evolution on the boundary, see [59],
or by considering a two-phase system with one phase being a thermal source, see [65]. By solely focusing on
the evolution ofw, we obtain the following

∂tw =

(
Jww(w, θ∗)− 1

θ∗
Kww(w, θ∗)

)
DwF (w, θ∗) , (40)

where θ∗ plays the role of an external parameter. Observe that in this case Jww is again skew-symmetric
and satisfies the Jacobi’s identity and Kww is symmetric and positively semidefinite, which would allow us to
identify once more Jww with the conservative and Kww with the dissipative dynamics. The symmetry and
skew-symmetry properties are still valid since Kww and Jww are principal minors of K and J. The Jacobi’s
identity is satisfied in view of [42, Prop. A.1] and the positive semidefiniteness thanks to Sylvester’s criterion,
see e.g. [27, Thm. 7.2.5].
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4 Eulerian diffusion and finite strain in a multiphase system

We dedicate this section to introduce a weak formulation of (40) based on the definition of suitable bilinear forms
derived from the operators J and K previously discussed. Additionally, we provide a numerical example inspired
by the theory of fluid-structure interaction (FSI) problems to highlight the benefits of this variational framework.
In the spirit of [10] or [21], for example, this construction has the goal to construct a class of structure-preserving
schemes.

Weak form of damped Hamiltonian systems. Based on previous work [53, 58], we can reformulate a damped
Hamiltonian evolution, i.e. (40), for the state variable q : [0, T ]→ Q and the free energy F

∂tq = (J(q)−K(q)) DF (q), (41)

as a saddle-point problem. Therefore, we introduce variables η = (ηα, ηm, ηc) ∈ V and an operator B :
Q → V ∗ such that for every q ∈ Q we find η ∈ V such that B∗η = DF (q) ∈ Q∗. Multiplying (41) with B
from the left ans inserting η then results in the operator equation in saddle-point form

A(q)η − B∂tq = 0, (42a)

B∗η = DF (q), (42b)

which holds in V ∗ × Q∗ and where A(q) = B
[
J(q) − K(q)

]
B∗ : V → V ∗. This operator equation is

equivalent to ∂tq and η being a stationary points of the functional

R(·, · ; q) : V ∗ ×Q∗ → R , R(v, ξ; q) = −1
2〈A(q)η,η〉U + 〈Bv,η〉U + 〈DF (q),v〉Q

with respect to v, ξ for given q. In [53] we show how the operators need to be chosen for an Eulerian approach
to nonlinear elasticity that is generated from a corresponding Lagrangian model. Furthermore, in [66] a similar
construction is presented for compressible flows with diffusion and reactions. Similar structures have been
analysed in the context of poroelasticity [21].

Free energy and bilinear forms. As an example we consider here the dynamics q : [0, T ] → Q of a
compressible isothermal multiphase system with state variables

q =

α : Ω→ Rd
m : Ω→ Rd
c : Ω→ RN

 ∈ Q ; (43)

lateron, in the numerical example we set d = 2 and N = 1. We showcase an Eulerian formulation of nonlinear
elasticity in a multiphase setting coupled to diffusion. The multiphase character is introduced by a Lagrangian
indicator function

ῑ0(x̄) =

{
1 if x ∈ Ωs,

0 if x ∈ Ωl,
(44)

where Ω̄ = Ω̄s ∪ Ω̄l is built from the mutually disjoint solid and liquid phase. Similarly, we use ῑε : Ω̄→ [0, 1]
a smooth approximation of ῑ0 as ε → 0, see Figure 3. Note that if ῑε can be expressed explicitly, then ιε can
also be written explicitly as its composition with α. Consequently, derivatives of ιε with respect to x, t and
also α can be computed explicitly. The Eulerian indicator function ιε := ῑε ◦ α satisfies a continuity equation
∂tιε + ν · ∇ιε = 0. One major advantage of the reference map is that we can explicitly express the time and
space dependence of material parameters ps, pl ∈ R of the solid or liquid phase via the smoothed indicator
function by

pε(t, x) = psῑε(α(t, x)) + pl
(
1− ῑε(α(t, x))

)
, (45)

which can also be simply expressed as pε = psιε+pl(1− ιε). More generally, any spatial heterogeneity in the
Lagrangian frame can be explicitly represented by composition with the reference map α. For this example, we
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Figure 3: (left) transformed sharp indicator ι0 = ῑ0 ◦ α on deformed mesh with initial displacement ū(t =
0, x̄, ȳ) = x̄ȳ(1−x̄)(1−ȳ) and corresponding diffuse indicator ιε for ε = 10−2 on a domain Ω = Ω̄ = [0, 1]2

with solid Ω̄s = [0.4, 0.6]× [0, 0.5] (red) and liquid Ω̄l = Ω̄ \ Ωs (blue).

use the subscript ε to indicate the interpolation of two material parameters (ps, pl) via the smoothed indicator
and the return map for general tuples of real-valued parameters.

This allows us to write the Eulerian energy of the isothermal system as

F (q) =

∫
Ω

|m|2

2%ε
+ Fε[q] dx , Fε[q] = F mech

ε (Fiso) + F int
ε (c), (46a)

and, following (45), we define the mass density as

%ε(t, x) = V (t, x)−1
(
%̄sῑε(α(t, x)) + %̄l

(
1− ῑε(α(t, x)

))
(46b)

with referential mass densities %̄s, %̄l ∈ (0,∞). Similarly, we use an elastic energy

F mech
ε (Fiso) = 1

V

[
Gε
2 tr(Ciso − I) + Kε

2 (V − 1)2
]
, (46c)

F int
ε (c) = kεc

(
log
(

c
cref,ε

)
− 1
)
, (46d)

with the deformation gradient F = ∇α−1, its Jacobian V = detF and the isochoric part Fiso = V −1/dF .
Furthermore, Ciso = F T

isoFiso denotes the isochoric part of the right Cauchy-Green tensor Gε = Gsιε +
Gl(1 − ιε) captures the energy due to distortion of the solid or liquid phase, Kε = Ksιε + Kl(1 − ιε)
encodes compressibility and kε = ksιε + kl(1− ιε) encodes the contribution of c to the heat capacity. Note,
when calculating DF , then the derivatives of functions such as %ε with respect to α need to be taken fully into
account to produce a consistent force balance. This form of a saddle-point structure is suitable for numerical
treatment, as by testing (42) directly translates into the weak form

a(η, ξ; q)− b(ξ, ∂tq) = 0 , (47a)

b(η,v) = 〈DF (q),v〉 , (47b)

wherea(η, ξ; q) := j(η, ξ; q)−k(η, ξ; q) with the skew-symmetric bilinear form j(η, ξ; q) = 〈BJ(q)B∗η, ξ〉
and k(η, ξ; q) := 〈BK(q)B∗η, ξ〉 is a symmetric positive bilinear form. We have v = (vα, vm, vc) ∈ Q,
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Figure 4: (top row) Eulerian solution of Equation (49) with parameters from Table 1 showing the indicator
function ιε (shading blue ιε = 0 and red ιε = 1) and momentum (black arrows) for different times increasing
from left to right and (bottom row) Lagrangian solution with sharp indicator ι0 on deformed mesh (shading) and
momentum (black arrows) at the same times as in top row.

∂tq = (∂tα, ∂tm, ∂tc) ∈ Q and η = (ηα, ηm, ηc) ∈ V and ξ = (ξα, ξm, ξc) ∈ V , where

j(η, ξ; q) =

∫
Ω

[
∇αT ξα −∇ξTmm

]
· ηm −

[
∇αT ηα −∇ηTmm

]
· ξm

+ c [∇ξc · ηm −∇ηc · ξm] dx (48a)

k(η, ξ; q) =

∫
Ω
µε∇sηm · ∇sξm +Dε(c)∇ηc · ∇ξc dx (48b)

b(η,v) =

∫
Ω
ηα · vα + ηm · vm + ηc · vc dx (48c)

We note that the bilinear forms so introduced are consistent with the previous definition of reversible (31) and
irreversible (32) operators after transformation to the isothermal system (40).
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Figure 5: (top row) Eulerian solution of Equation (49) with parameters from Table 1 showing the concentration
c (increasing from blue to red) and momentum (black arrows) for different times increasing from left to right
and (bottom row) Lagrangian solution with concentration on deformed mesh (shading) and momentum (black
arrows) at the same times.

Numerical example. This structure-preserving weak form is discretized in space using finite elements and in
time with a semi-implicit scheme, where DF is computed fully-implicit, whereas the dependence of a on η is
treated implicitly and the dependence on the state q is treated explicitly. Therefore, for given qn−1,ηn−1 we
seek qn,ηn such that

a(ηn, ξ; qn−1)− b
(
ξn, 1

τ (qn − qn−1)
)

= 0 (49a)

b(ηn,v) = 〈DF (qn),v〉, (49b)

for all v, ξ. For this Eulerian formulation scalar and vectorial P1 finite elements are used throughout.

Parameter Gi Ki µi %̄i ki cref,i Di

fluid ( i = f ) 10−4 1 10−4 10−2 1 1 10−2

solid ( i = s ) 101 1 10−4 100 1 2 10−2

Table 1: Simulation parameters for fluid and solid phases for Ω̄ = Ω = [0, 1]2, Ω̄s = [0.4, 0.6]× [0, 0.5] and
phase-indicator ῑε with ε = 0.01.

Numerical solutions for this Eulerian formulation (49) based on the material parameters in Table 1 are compared
with their Lagrangian counterparts in Figure 4 and Figure 5. We omit the Lagrangian formulation of the problem
and refer instead to [53] for details. In the example shown in Figure 4 and the corresponding energies in Figure 6
one can observe an oscillatory motion of the system due to inertia. The aspect ratio of mass densities %̄s : %̄l =
100 : 1 causes the momentum to be concentrated in the solid phase, i.e. the black arrows are mainly visible
in the solid phase. Slight differences between Lagrangian and Eulerian solutions are due to the finite ε and
rather large time steps. The oscillation ceases quite quickly due to the large viscosity in solid and liquid phase.
Furthermore, Figure 6 clearly shows that during the evolution the (total) energy decreases whereas the solid
phase expands significantly by almost 40%. To understand the expansion, one can assume a homogeneous
state. In the solid phase, one can then use the stationary state variables as V (x) = Vs ∈ (0,∞) and
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c(x) = cs, while in the liquid phase, the state variables are V (x) = Vl ∈ (0,∞) and c(x) = cl. Importantly,
the evolution conserves total concentration C and total volume V , which are expressed as

C = csVs|Ω̄s|+ clVl|Ω̄l|, V = Vs|Ω̄s|+ Vl|Ω̄l| = 1 . (50)

This conservation property allows cl and Vl to be expressed in terms of cs and Vs. Consequently, the free
energy of the homogeneous system can be written as a function of the two real parameters cs and Vs. As
shown in Figure 7, the free energy exhibits a minimum at cs ≈ cref,s = 2 and Vs ≈ 2 and explains the solids
expansion.

The example above demonstrates that a thermodynamically consistent, unified formulation can be constructed
for a multiphase system that allows for large deformations. The usage of the reference map α allows to state
the weak formulation of the nonlinear PDE in spatial (Eulerian) coordinates while retaining information about the
reference configuration, which can be useful when Lagrangian material properties need to be accessed, e.g.
via material indicator functions. However, for fluid flows with large distortion, it might be non-trivial to ensure the
invertibility of α, resp. χχχ, and a more classical discretization of compressible flows in terms of density % and
momentumm as the state variables might be more suitable.

By using Equation (47) together with the bilinear forms (48), a natural structure-preserving discretization is
obtained that ensures thermodynamic consistency, although one needs to be careful in a multiphase setting to
compute all derivatives with respect to the indicator functions ιε = ῑε ◦α consistently. This can be an intricate
process, which is best handled by discretization frameworks that support automatic differentiation of expressions
and functionals, e.g. FEniCS [34]. Once such a formulation is available, multiphase and multiphysics problems,
e.g. the coupling of multiphase flows and diffusion, can be discretized in space with relative ease via finite
element methods.

The proposed structure introduces additional terms, which make the equations appear more complicated at first
glance, and the usual structure of the momentum balance becomes only apparent after certain terms cancel.
While this might imply additional complexity, it remains an open question whether these additional terms, which
stem from structure preservation, could be beneficial for numerical stability.

5 Conclusions and summary

We presented a GENERIC quintuple (Q,E ,S , J,K) for materials at large strain with diffusion processes in
Eulerian coordinates, where the reference mapα (1) is used as the main variable governing the deformation. We
also introduced the corresponding Lagrangian GENERIC system (Q̄, Ē , S̄ , J̄, K̄) and showed its connection
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Figure 6: (left panel) Total energy F (q(t)) (shifted by a constant) and kinetic energy K (q(t)) and (right
panel) solid volume

∫
Ω ιε(t, x) dx as functions of time 0 ≤ t ≤ 4. The solid domains Ω̄s = Ωs(t = 0) =

[0.4, 0.6]× [0, 0.5] initial volume is 0.1, which is well approximated by ιε.
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Figure 7: Contour plot of energy F (q) as a function of an assumed homogeneous (constant in space) solid
concentration cs and volume Vs for parameters in Table 1. Also the liquid concentration cl and volume Vl are
assumed homogeneous and are determined from conservation laws.

to (Q,E ,S , J,K) via a transformation mapping Lagrangian to Eulerian state variables TLE : Q̄ → Q.
The thermodynamical functionals and geometric structures are then linked through a linearization of this map
DTLE(q̄) = L(q̄) and through the closure conditions (14). In order to systematically structure this approach
we introduced kinematics and thermodynamics in the Eulerian and Lagrangian frame. Finally, we constructed
a structure-preserving discretization based on a saddle-point structure relying on symmetry-preserving bilinear
forms a = j − k with skew-symmetric j and symmetric positive k. We presented an example with fluid-
structure interaction and diffusion based on indicator functions, which is similar to other contemporary methods
for fluid–structure interaction that explicitly evolve level sets [57].
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