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Abstract

The objective of this paper is the analytical investigation of an integral equation formulation for elec-
tromagnetic scattering by 27-biperiodic multilayered structures with polyhedral Lipschitz regular interfaces.
Extending the combined potential ansatz from [6] for the electric fields in the before mentioned electro-
magnetic scattering problem from single to IV profile scattering yields an equivalent system of N integral
equations. We present a uniqueness and two existence results for this system depending on the values of
the electromagnetic material parameters of the considered biperiodic scatterer. This in particular includes
the proof that the system of integral equations is of zero Fredholm index. The general case that the grating
interfaces are of polyhedral Lipschitz regularity requires more strict assumptions than the special case of
smooth grating interfaces. We exploit the solvability results of this work in a subsequent paper featuring a
recursive integral equation algorithm for the 27-biperiodic multilayered electromagnetic scattering problem.

1 Introduction

In the following, we derive a boundary integral equation method for the treatment of 27-biperiodic multilay-
ered electromagnetic scattering, which arises from the illumination of a 27-biperiodic multilayered structure by
an electromagnetic plane wave. We model such structures by a finite number of vertically stacked non-self-
intersecting grating interfaces of at least polyhedral Lipschitz regularity. The incident, reflected and transmitted
waves can be described by the system of time-harmonic Maxwell equations together with transmission condi-
tions across the grating interfaces of the considered multilayered scatterer and suitable outgoing wave condi-
tions. The motivation behind our investigation is that such problems, i.e., particular diffraction problems, offer a
variety of considerable and interesting application areas, in particular in micro-optics. Moreover, some results of
this article are relevant for the outcome of the consecutive article [7].

In general, periodic structures can be understood in terms of several different geometry settings such as periodic
arrays of bounded obstacles, periodically aligned cylinders of infinite extent or surfaces exhibiting a certain
periodicity as considered in this paper. There are two main mathematically rigorous methods to treat scattering
problems involving periodic structures: integral equation methods and variational approaches. Here, we apply
integral equation methods, which lay the foundation for implementations based on boundary element methods.
In the periodic framework, the basic idea behind these methods is to assume potential ansatzes in form of
integral operators with problem-specific quasiperiodic kernels for the incident and scattered waves occurring
in the periodic scattering problems. A clever application of trace operators then makes it possible to obtain
boundary integral equations on the boundaries of the considered obstacles. Such techniques were already
successfully applied for instance in the articles [9], [12], [17] and [19].

Our precise approach consists in extending the potential ansatz applied in [6] for scattering by a single 27-
biperiodic interface to the multilayered framework. This is done by alternating an «-quasiperiodic Stratton-Chu
type integral representation with electric potential ansatzes. For a structure consisting of IV interfaces, this
approach leads to a system of N singular integral equations that are computationally very expensive to solve,
especially for large V. Hence, our focus lies on the analytical investigation of the mentioned system. We depict
uniqueness and existence of solutions to the derived integral equation system by applying the results and ideas
from [6] for single profile scattering. The solvability of the integral equation system contributes to the proof of an
existence result for the recursive integral equation algorithm derived in [7].

The content of this work is also presented in a more extensive form in Section 6.3.1 of the PhD thesis [8] with
the title “On Integral Equation Methods for Electromagnetic Scattering by Biperiodic Structures”.



The subsequent section states the 27-biperiodic /N-layered electromagnetic scattering problem for structures
composed of N > 2 non-self-intersecting 2m-biperiodic grating interfaces of polyhedral Lipschitz regularity.
Section 3 then provides us with the relevant functional analytic framework necessary to pursue integral equation
techniques in the 27-biperiodic setting, in Section 4. Based on the previously described combined potential
ansatz, we derive a system of singular boundary integral equations as well as its adjoint in a certain sense, which
are both equivalent to the 27-biperiodic multilayered electromagnetic scattering problem. This equivalence shall
be understood in the sense that any solution of one problem yields a solution of the other and vice versa. The
structures of the system and its adjoint are parity dependent. Next, we investigate the solvability of the integral
equation system in Section 5. For this, we first determine the Fredholm properties of the integral equation system
with the result that it is Fredholm of index zero under certain assumptions on the electromagnetic material
parameters. With this result, we can then prove the existence of solutions to the considered integral equation
system by extending the techniques in [6] from single to multi-profile scattering. In a similar way, we adapt the
ideas in [6] to deduce the uniqueness of solutions to the integral equation system via a variational argumentation.
In the final Section 6, we briefly recapitulate the main findings of this article. Moreover, we propose how to
continue our work on the treatment of the 2m-biperiodic multilayered electromagnetic scattering problem by
integral equation methods.

Notation. For vectors = € R?, we denote by  their orthogonal projection to the (1, 22 )—plane. We distinguish
vector-valued function spaces from scalar-valued ones by writing them in bold font.

2 The multilayered electromagnetic scattering problem

In this section, we want to formulate the 27r-biperiodic multilayered electromagnetic scattering problem treated
in this article. For notational reasons, we introduce the index sets

K={1,...,N-1}, Ko=Ku{0}, KYN =KU{N} and K} := K" U{0}.

We consider a 27-biperiodic multilayered structure consisting of N > 2 non-self-intersecting vertically stacked
interfaces 3, C R2, k € K, that can be described by piecewise C? parametrizations

T
ou(t) = (tl,tg,:cék) (t)) suchthat 20" (t + 2 m) = (M (¢) @.1)

fort = (t1, tQ)T, m € Z?, k € K. Speaking visually, each ¥}, is 27-periodic in both x;- and z>-direction
and may exhibit edges and corners. From here on, we refer to this kind of regularity as polyhedral Lipschitz
regularity. Moreover, the surfaces I, are numbered in descending order from top to bottom, i.e., the top surface
is 2 and the bottom one X . All considerations in this paper focus only on one period of the multilayered
scatterer as it is commonly seen in the treatment of periodic problems. This means that we restrict each surface
>k, k € K, to one period I';:

'y ={ok(t) : t€Q}, where Q= [—m,m) X [-m,7)

corresponds to the unit-cell of the periodic lattice. The restricted profiles I'y,, & € Ky, separate N + 1 ho-
mogeneous material layers G, C R3, k € Kév, of constant electric permittivity €, and constant magnetic
permeability tiz. The top domain Gy and the bottom domain G are both semi-infinite, whereas all regions Gy,
k € K, in between are bounded polyhedral Lipschitz domains. We specify the unit normal vectors n;, = n]Fk,
k € Ky, of I';, in such a way that they point upwards, i.e., into G,.. The electromagnetic material parameters
€ and ug, k € Kév, are assumed to be 27r-biperiodic in x1- and in xs- direction in GG, and to satisfy

Im(e) >0 and Im(ug) >0 inGy, ke K. (2.2)

We exclude the case that e, = 0 and/ or pg, = 0. This ensures that «; 7 0. Moreover, we define the piecewise
constant wavenumbers

Kk = wy/€ex/ 1k in G, k € K(])V,



where w > 0 is a fixed frequency. The square root of a complex number z = re'? is chosen such that
VZ = /Te'T for 0 < o < 2.

In the course of this paper, we will use the auxiliary polyhedral Lipschitz regular domain GH depending on a
fixed H € R, which is chosen such that

IyCcGl={z= (323" € QxR : |z3] <H} forallk € K. (2.3)
Denote by Gé{ and G% the restrictions of the semi-infinite domains G and Gy to GH, i.e.,
Gl =a"nGy and GY =G"nGy.
Moreover, we will work with the semi-infinite domains
G,j ={r e QxR :x3>0,(%)} and G, ={r € Q xR : 23 < 0y(2)}, k € Kp. (2.4)

The interface I is now illuminated from G by a time-harmonic electric plane wave E' at oblique incidence
specified by
E! = pellmeitara—ass) it o0 > (. (2.5)

It in particular fulfills the relation
U (Z 4 2mm, x3) = e2Tmitamma)y () forallm e Z2.

This special type of periodicity up to a phase shift will be called a-quasiperiodicity (abbreviated as a-gp). The
wave vector o = (aq, ag, —ag)T of the incident field exhibits the following properties:

la|*> = |ko|> and a-p=0. (2.6)

The total electric fields are given by E! + Eg in Go and by Ej, in G, k € K. Then the 2m-biperiodic
electromagnetic scattering problem written in terms of the electric field is expressed as follows: We look for
vector fields Eg, k € Kév, of locally finite energy, in the sense that

Ej, curl E, € L} _(R?),
solving the time-harmonic Maxwell equations
curlcurl E; — /@%Ek =0 inGg 2.7)

with respect to the transmission conditions

TpoE1 = VS,OEO + VﬂoEi on Iy, (2.8)
e 0B = o1t (95, 0B0 + 7, oF) on Ty, (2.9)
1oxBrt1 = yg,kEk onTy fork € K, (2.10)
thﬂ,kEkH = p;jlygwkEk onTyfork e K 2.11)
and the outgoing wave condition in the sense of Rayleigh series:

Eo(x)= E0 el (0345w ) z € G with z3 > H, (2.12)

nez?
En(z) = Z Egei(o‘(")'i_’@@“), x € Gy withzg < —H. (2.13)

nez?

Here, n = (ny, ng)T, o™ = (aq + ny, a0 4 n2)T and

k2 — a2 with 0 < arg (,BI(C")) <7 ifrp ¢ R_,
’Bl(fn) =4 —\/ 6% — a2 if i, € R_ and k7 — la™ 2 > 0,

i ’%z - ‘a(n)|2 if K, € R_ and /{z — |a(n)|2 < 0.

Since the electric incident waves are a-quasiperiodic, the sought-after fields are also a-quasiperiodic.



3 Function spaces, traces and electromagnetic potentials

Let 2 be a polyhedral Lipschitz domain in R®. If 2 is bounded, we denote by H*(2) the usual scalar-valued
Sobolev space of order s € R with the common convention L?(Q2) := HY(Q). Otherwise, H; () refers to
the space of functions contained in H*(K) for all K € €. Their vector-valued counterparts are specified by

H*(Q2) and Hj _(2). Let D be a differential operator. Then
H(D,Q) :={ueL*Q) : DueL*Q) (orDue L*(Q)},
Hioe (D,Q) = {ue Ly (Q) : Due L} (Q) (orDue L} (Q)}.

Both spaces are endowed with their natural graph norm. We consider the following ai-quasiperiodic Sobolev
spaces for s € R:

H: (Gy) = {u € H*(Gy) : Ja-gpv € Hj .(R*) suchthatu = v|g, }, keK,

H:(D,Gy) = {u e H*(D,Gy) : Ja-gpv € Hj, . (D,R?) suchthatu = v|g, }, k€ K,
H? 1, (Gp) = {u € H} .(G}) : Ja-gpv € H} (R?) suchthatu = v|g, } , ke {0,N},
S 1oe(D,Gr) = {ueH;,.(D,Gy) : Ja-gpv € HY (D,R*)s.tu=v|g,}, ke {0,N}.

Moreover, we define the space

H, =Jdu= Z u, e HuHis = Z <1 + ’a(”)

2 S
) lu,|* < o0
nez? nez?

for s > 0. Completing L2 (Q) with respect to the norm ||u|,—s == sup ([(w, v)rz (@)l/11v]
0#veHS,

a,s) provides

the dual space H_ %, s > 0, of H . Moreover, we have
H;(Ty) ={u : uoop € H} fors e [0,1],k € K.

The dual space of HE (T'},), k € Ko, denoted by H_,*(T';) for s € (0, 1], arises from the completion of L2 (T")
with respect to the norm [|u|gy—s p, ) = [[(wo op) (1 + [V0]?)"/?[|o,—s- We in particular set

«a

1 / _1
VE .= H2(T}) and (vg) = H, 2 (T}).
Finally, we introduce the space L37t(Fk), k € K, which is defined by
Li7t(Fk) = {u € Li(Fk) cu-ng = 0} )

This function space is identified with the space of two-dimensional tangential vector fields - sections of the
tangent bundle TT', of I';. for almost every x € T'y.

Traces of vector fields on each of the scattering surfaces I'y,, k € K, are deduced from the classical traces of
vector fields on the boundary of bounded polyhedral Lipschitz domains that contain I'j, such as GH, with the
help of suitable truncation procedures. For details on the classical traces, we refer the reader to [2]-[5].

Definition 3.1. Letu € C°(Gy) oru € CSO(G7E:) Then we define the upper Dirichlet, Neumann and
Dirichlet tangential components traces of u onI'j, as

W]Jg’ku = (ng X u)lp, , wf\?mku = ! (n; x curl uwlr,
Wg,ku = ((ng x u) X ng)|p, -

Similarly, we have
Tpptt = (mg x )lp, N, U= k1 (ng x curl u)lp,
Tp = ((ng X u) X ng)|p,

foru € C°(Gp41) oru € C(?O(Gilz)



Remark 3.2 (Notation). Let G be a bounded polyhedral Lipschitz domain such that I'y, C OG. Additionally,
lety : HL(G) — V¥ be the standard vector trace operator on Ty, k € K. We denote by v~ one of its
right inverses. From here on, the Dirichlet trace yp i and the Dirichlet tangential components trace mp i shall
be interpreted as the composite operators yp, k’y_l and mp, k’y_l, respectively, if they act on traces - lying, for
instance, in the space Vg.

For k € Ky, we define the trace spaces V”;w and V’;Jr by
me = fyD,k(V]fy) and V(];Jr = WD,k(VIOC[).
Endowed with the norms

lullyy,, = inf, {IVlve = pav=u} and [uly, = Jnt {Ivlve = mov =u}

respectively, the spaces Vfw and VE ke K, are Hilbert spaces. These norms guarantee the continuity of

o,
the Dirichlet trace yp x and the Dirichlet tangential components trace 7p x. The mappings vp x : V§ — V’O‘i’7
and 7p 1, : V]; — V’;m are isomorphisms by construction (cf. [4, p. 683]). The density of V’; in L2 (') yields
that V’gw and V¥ __ are dense subspaces of L2 ,(I'; ). Their dual spaces (me)’ and (VE ) are given with
respect to the pivot space L2 ,(I';,). We emphasize that the spaces V£, V& (Vﬁw)’ and (V£ ) are
considered as spaces of tangent fields of regularity 1/2 and —1/2, respectively.

In the following, we denote by iy : L2 (I'y) — L2(T%) and iry : L2 (Dx) — L2(I) the adjoint
operators of yp  and 7p j, for k € K. They can be extended to the following isomorphisms:

, kY k\° AN k) k\° k)
i (VM) N (N(VD,k)mVa) c (Va> in (VW) N (N(vp,k)ﬂVa) c (Va> :
where -° denotes the polar set (defined, e.g., in [21, pp. 136ff.]).
We define an operator 7, k € K, by

Tk . L37t(Fk) — Lit(l“k), TE = Z';}f’i%k.

This is the rotation operator corresponding to the geometric operation - X ng. The operator 7 can be extended
and restricted to mappings 7, : V& = — Vﬁw and 7y, : (VE ) — (VE_). For any choice of spaces 7y,
k € Ky, is invertible with r,?l = 1, = —T}, where 7}, denotes the adjoint operator of 7, with Li’t(Fk) as
pivot space. These and further insights on the rotation operator 7, k € Ky, are deduced from its nonperiodic
equivalent characterized in [3, p. 851].

From here on, we will frequently come across several surface differential operators on I'y,, k£ € K: We denote
by Vr the tangential gradient, by divr the surface divergence, by curlr the tangential vector curl and by curlp
the surface scalar curl on I';. The definitions of these operators on boundaries of bounded Lipschitz domains
can be found in [4]. The corresponding definitions on I'y, are then easily deduced from the former definitions via
suitable truncation procedures. Therefore, we will not give further details in the following but refer to Bugert’s
PhD thesis [8, Section 2.2].

The spaces defined by

1 / _1
H,? (divr, [},) = {u c (VQ,,) Jdivru € H, ? (rk)} ,
_1 / _1
H, ? (curlp,Ty) == {u € (VgW) ,divpu € Hy 2 (Fk)}

for k € K are the trace spaces of H, (curl, G) (H, o (curl, G)) for a bounded (an unbounded) polyhedral
Lipschitz domain G such that 'y, C 0G. Endowed with the norms

L P

)

e e
= il + vy



15 = 3l gy + leurdedll _y

_1
Haﬁ(curlp,Fk) e Q(Fk)
they are Hilbert spaces.

The trace operators 'y]% 5, and vﬁﬂ 1 €an be extended to bounded linear operators

Q
N|=
—

[ Ho(curl, Gy)  — divp,Ty) ifk € K,

H
Mk Hajoclcurl, Gy)  — Hg ?(divp,T'y) ifk =0, (3.1)
{ Hojoc(curl, Gf) — H, %(divF,Fk) ifk € Ko,
Ho(curl, Gy)  — Ha?(dive, Ty 1) itk € K,
Yo 4 Halcurl, Gy)  — Ha?(dive, Ty 1) itk = N, (3.2)
—H

1
H, joc(curl, G) o2 (divp, Tg_1) ifk € KV,

H, (curlcurl, Gi) — H;%(din, I'y) ifkeK,

7§mk 'y Hajoc(curlcurl, G;) — H;%<diVF, Ty) ifk=0, (3.3)
H, oc(curleurl, G) — H, %(divF, I'y) ifk € Ko,
H, (curlcurl, Gi) — H;%(din, I'y—1) ifkeK,

Nk - Ha(curlcurl, Gy) — H;%(divF, I'y—1) ifk=N, (3.4)
H, joc(curlcurl, G,)) — H, 2 (divp,Tx_1) ifk € KN,

The operator 7, can be considered as the mapping 7 : Hgl/Q(divF, ry) — H&I/Q(Cuﬂr‘, I'y) for k € K.
This ensures that the bilinear form By, : Hy'/*(divy, T'y) H:la/Q(divF, I'x) — C, specified by

Bi(j,m) := / jore(m)do = —/ rx(j) -mdo fork € K, (3.5)
I Ty

is well-defined. It is non-degenerate in the sense of [18, Definition 1.2.1]. A proof is found in [8, Lemma 2.57].

For technical reasons, we also consider the duality product analogous to By, k € K, on the boundary 052 of
bounded Lipschitz domains €2 with an unit outer normal vector n:

Boo : H™2 (divr, 0Q) x H 2 (divy, Q) — C, Bsg ::/ j-r(m) daz—/ r(j) - m do,
o o0

which is defined in [11, § 3] together with the Hiloert space H~'/?(divr, Of2) - the nonperiodic equivalent of the
space H;l/z(divr, I'x), k € Ky. Here, the operator 7 corresponds to the nonperiodic version of the rotation
operator 1, k € K. Forallu, v € H(curl, 2), we have the Green identity

/ curlu-v —u-curlv dz = Byo(ypu,7pVv). (3.6)
Q

Next, we introduce the a-quasiperiodic potential operators relevant for this work. They are based on G, the
a-quasiperiodic fundamental solution of the time-harmonic Helmholtz equations, specified by

; i(Oé(">'(i—ﬂ)+ﬁ(")|$3—y3|)
Gi(z,y) = % > € , (3.7)




where

\/ K2 — ‘a(”)}Q with 0 < arg (ﬂ(”)) <m itk g R_,

ﬁ(") =1 /K2 — }a(")F if k € R_and k%2 — ’oz(”)

\2>0,

if k€ R_and k%2 — ’a(”)f > 0.

in/ k2 — ’a(”)‘g

Assuming that K2 =+ \04(”)|2 for all n € Z2, the function G converges uniformly on compact sets in
R3\ Upeze (2701, 2702, O)T. Details on the derivation of G and its analytical properties are given in the
habilitation thesis [1, §3].

The single layer potential on ', k € Ky, is given by

() ") (2) =2 g Gi(z,y)uly) do(y), =€ (QxR)\T.

The related operator V" is defined by

(Vkor‘fu) (x) =2 Gi(x,y)u(y) do(y) forx € T'yy,m € K.
Tk

For k = m, the operator V" corresponds to the classical scalar trace of the potential S;”".

Lemma 3.3 ([8, Lemma 6.2]). Lets € (0,1) and k € K. Then the operator S,?"{ gives rise to a continuous
linear operator,

1
s+3

_ s-l—l _
St HEH(Ty) — H\Z(GH)UH, 2(Gy), or
s+% s+%

S HL T (T) = Hy 2 (G UH 2 (Gy).

a,loc

The operator V)" exhibits the following mapping properties:
Ver s HS W Ty) — HE(Ty) or V™ HEH(Ty) — HE(D).

Moreover, for m € K such that k # m, both the operators V"%« H5 Y(T'y) — HE(Ty,) as well as
Viek HEY(Ty,) — HE(Ty,) are compact.

These mapping properties hold for all s € R ifT'y, and I',,, are smooth surfaces.

Definition 3.4 (Electric potential). For a density j € Hy"*(divy, T}, the electric potential g onTy,
k € Ky, is defined by
VR 1= wSy i+ £TIVS  dive §.

By curlcurl = —A + V div, it also has a representation as Vg, j = k! curl curl 5;"j.

Definition 3.5 (Magnetic potential). For a density m & H(;l/ 2(divF, I'k), we define the magnetic potential
\Illc\“/["w,C onT'y, k € Ky, by
M, xm = curl S} m.

We in particular observe that
k1 curl Vg, = Vi, and w1 curl Uk = VE, k- (3.8)

Lemma 3.3 and the identities (3.8) imply the following lemma.



Lemma 3.6. The electromagnetic potentials Wy, . and Wy, , are continuous operators with the following
mapping properties:

_1
Bk Ui p 0 Ho 2 (dive, Ty) = Hooc(curl, G) UHg joc(curl, Gy)  fork € Ko,

where Gf are the semi-infinite domains from (2.4). For j,m € Hg"/ *(divy,T'g), they satisfy the time-
harmonic Maxwell equations

(curl curl —x?) g xj=0 and (curlcurl —K?) Wy, xm =0
in Gf as well as an outgoing wave condition of the form (2.12)-(2.13).
Defining [ys«,x] = 7., — Vi for * € {D,N,.} and k € K, the jump relations

(7] YE, x =0, (N, k) VE, = 2L, (3.9)
[vo,k] Yr, 1 = —21, (N, k] Uap, ke =0 (3.10)

hold.

The considerations in this article involve the boundary integral operators
Crom = A{mr} Y&, 1 = {WNuk} U1, and M = {yp s} U1, = 1Nk} OB m
forz € I'y,, m € Ko, where {7, 1.} = —% (’y*_k + ’yjk> forx € {D,N,} and k € K.

Lemma 3.7. For k € Ko, the boundary integral operators C;" and M;" give rise to bounded linear op-
erators, iy, M3" « Ha'?(divy, Ty) — Ha'?(divr, T'y). Form € Ko, m # k, the operators C}.",
M2 Hy?(divy, Ty) — Ha'/?(divy, Ty) are compact.

km

This is easily entailed from Lemma 3.6 and the mapping properties (3.4) of the trace operators.

With the help of the jump relations (3.9) and (3.10), we are able to deduce the technical identities.

+ + ,
orYE k= Nk Y0k = —Cri s (3.11)
+ + ,
Mook VB = 1o Ve = —My" £ L (3.12)
For k # m, we have
+ + ) + o o,k
ok PEem = M,k Piem = —Chmn a0 N 2 PE, m =D k\IIO‘ m =M. (3.13)

The subsequent lemma provides expressions for the adjoint operators (C’,?nf), (M,?;:)/ of the boundary
integral operators C).’~ and M, with respect to the dual systems (see [18, Definition 1.2.3])

1 1

_1 1 _1 _1
B, (Hy 2 (divy, T'y,), H_2(divr, I'y,)) and By (Hg 2 (dive, T'y), H_2 (divp, I'y)).

Lemma 3.8 ([8, Lemma 6.9]). Letk, m € K. The adjoint operators (C2FY (M;2") of the integral oper-

km km
ators Ci>% and M" with respect to the dual systems B,,,(Ha'"*(divr, T'y,), HZ loég(dlvF, m) as well as
B (H,'*(divr, Fk) “J3(divr, Ty)) are (CoF)' = —CT;Z‘ " and (M) = ", Thus, we have
By (Cmm,j) = =B (m,Co"j) and By (Myrm,j) = ~By (m, ﬂ;gﬁj) (3.14)

forallm € H,'?(divy,T,,) and allj € H™Y/*(divp, Ty).



Lemma 3.9 ([6, Lemma 3.13 and Corollary 3.15 for I' := I'x]). For k € Ky, the boundary integral operators
C’E‘,f andl + M ,S‘k’ﬁ are Fredholm operators of index zero in Hy'/* (divp, IT'g).
The subsequent result is concerned with the invertibility of C}.;".

Lemma 3.10 ([6, Lemma 3.16 for I := I';]). The boundary integral operator C};" is invertible in the Hilbert
space H,'? (divyp, I'g) if and only if the homogeneous Dirichlet problem,

curlcurlE — k?E = 0, divE = 0, Yo, =0
- . iy (3.15)
and E satisfies the outgoing wave condition

only has the trivial solution in both of the domains G;r and G, .

Remark 3.11. For several results in this article, we require the invertibility of the boundary integral operator
O in Hy?(divr, T'y,), which is equivalent to the uniqueness of (3.15) by Lemma 3.10. Even though there
exist several counterexamples to the uniqueness of (3.15) (see, e.g., [15], [16]), we assess the assumption that
Cii" s invertible not to be very restrictive. For details, we refer to [8, Remark 4.46].

In the course of this article, the following three integral representations are employed.

Lemma 3.12 (Stratton-Chu integral representation, [8, Theorem 4.24]). Let E satisfy time-harmonic Maxwell’s
equations curl curl E — k?E = 0 in G; U G, (see (2.4)) satisfying the outgoing wave condition. Then E
admits the integral representation

1
E(z) =~ (Ug, pi(z) + 94, om(z)) forz € G UG,

Whel’ej = [’)/lek] E andm = ['VD,k:] E.

Lemma 3.13 (Stratton-Chu type integral representation, [8, Lemma 6.14]). Let the electric field E be an a-
quasiperiodic solution of time-harmonic Maxwell’s equations curl curl E — x*E = 0 in the bounded domain
Gy, k € K. Then E can be represented as

1 1 _ _
E= B ( %mmﬁl,kE + \I/fqﬂ,k’YS,kE> -3 (\I/gmkflmekilE + \Ifﬁ‘Amk,ﬂD,qu) (3.16)
in Gk
Lemma 3.14 ([8, Lemma 6.16]). Let the electric field 2 be an «:-quasiperiodic solution of the time-harmonic

Maxwell equations curl curl E — k2E = 0 in the bounded domain Gy, k € K. Then E has a unique
representation

E=0% , j+ 9%  m inGy (3.17)
with the densities m € H,'"*(divy,T'y) and j € Hy'"/*(divy,T_1) if the boundary integral operators
Cp"\ oy and Cpp" satisty N'(C1 1) = N(C") = {0}

The last result in this section serves as an auxiliary tool in some of the proofs in this article.
Lemma 3.15. Letk € K. If we have

‘I’%Hk,kqjk—l = ‘I’%Hk,kjk in G,

with jr_1 € Ha'/*(divy, Tx_1) and jx € Hy'*(divy, ') for some k € K, then

o 5 « . .
V., k—1Jk—1 = Vi kJk =0 inGy.

Remark 3.16 (Notation). In order to keep the notation as simple and as readable as possible, we introduce the
convention to replace the superscript ki, by (k) fork € K, év . If ki, occurs as a subscript, we abbreviate it by k.

Thus, we for example write C,?,;(k) instead of C};"™* and B,in) instead of 5,2’;).

Moreover, we separate two-component subscripts as they occur in the operators V,.", ;" and M,"" by

commata if misinterpretations are possible. This notation has already been applied in Lemma 3.14.



4 A system of integral equations

Below, we give an equivalent formulation of the 27-biperiodic multilayered electromagnetic scattering problem
in the sense of boundary integral equations that is deduced by extending the combined potential ansatz used in
[6] for the 27-biperiodic single profile electromagnetic scattering problem to multi-profile scattering. This yields
a parity-dependent system of integral equations whose size is directly proportional to the number of scattering
interfaces in the multilayered scattering structure.

4.1 Boundary integral equation formulation

We assume an «a-quasiperiodic Stratton-Chu representation of the electric field Eg in the layer GG above the
scattering structure, which is possible by Lemma 3.12. In the subsequent layers, a two-term «-quasiperiodic
electric potential ansatz with unknown densities j, € H,'/*(divr,Tx) (for k € K if N is even or for
k € Ko\ {N — 1} if N is odd) alternates with an a-quasiperiodic Stratton-Chu type integral representation
in the sense of Lemma 3.13. The field E in G below the scatterer is finally either considered to have an
«a-quasiperiodic Stratton-Chu integral representation if IV is even, or to be an a-quasiperiodic electric potential
applied to the unknown density j_1 lying in H;W(divF, I'y—1) if N is odd. Mathematically speaking, the
described potential ansatz reads as

1
Fo = (W%KO,W&:O,OEO + \Ifmomg,oEo) 1)
in Go,
; (Wa W, kB R, 6D kB
2\ Fr TRk Mol Tk for even k,
E; = - \I/%Kk,k—lnyNMk_lEk - \Illc\)l/lnk,k—l'VD,k—lEk) 4.2)
g, kb1 + VR Lk for odd k
in Gy fork € K,
1 e — e — N
D) (WENN,N—17NKN7N_1EN + ‘IJMNN,N—WD,N—lEN) for even N,
Ey = (4.3)
" .
\I/E,QN,NflJN—l for odd N

in G . By Lemma 3.14, the densities ji, k € Ko, are uniquely determined if
(k (K
N (Cl?—(l,)kq) =N (C,(:k( )> = {0} foroddk € K

and additionally ./\/'(C’]C\Y,’EJY)N_l) = {0}, in case of an odd number of interfaces N, holds.

The ansatz presented above is inspired by [20] and leads to a system of IV integral equations for the unknown
densities

=

jk S H; (din,Pk), k € Ky.
Written in matrix form, its structure slightly differs depending on whether IV is even or odd.

Remark 4.1 (Notation). In order to simplify the notation in this section, we define the auxiliary index sets K even
and K,qq connected to the N -index set K as

Keyen ={k € K : kiseven} and Kyqq =1{k € K : kisodd}.
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The rest of this subsection is concerned with the detailed derivation of the already mentioned boundary integral
equations, based on the potential ansatz (4.1)-(4.3). Their presentation in terms of a system of linear integral
equations is then seen in the subsequent subsection. For convenience, we recall the transmission conditions
(2.8)-(2.11). Expressing them in the form

15,0E1 =75 0Bo + 1p o B! on Iy, (4.4)
Rl _ ko ( + E _ i)
T = 0+ E on Ty, (4.5)
[ ’YNM ,0 m ’YNHOvO FYNKO,()
o Bkt = VS,kEk onTy fork € K, (4.6)
Rik+1 _ Kk 4
V Epr1=—n Ey onljfork € K (4.7)
g1 Nrrenk + gy Nk

simplifies the following considerations. Since we require the incident electric field E' to solve the time-harmonic
Maxwell equations with respect to the wave number ~q in absence of the 27-biperiodic multilayered structure,
Lemma 3.12 implies that &' can be represented as

i 1 — i — i : —
E=— (‘I’%NO,WNNO,OE + W&NO,07D70E> inGy, (4.8)

where G, = {z € Q xR : x3 < 0¢(Z)}. We then apply the Dirichlet traces 7;50 in (4.1) and vy, , in (4.8)
to arrive at

1

75080 = =5 (Coa ", oBo + (Mg = 1) 75 o) (4.9)
| I o

ol =5 (Cad(O)’yNK,O,OEI + (Mc%’(o) + 1) VD,OEI) (4.10)

with the help of the identities (3.11)-(3.12). We then subtract equation (4.9) from equation (4.10) and multiply
the result by the factor 2k / 110:

=2 (1,

- i ko (0 — i ko — i
o oBo+ 5, oF) + P (M55 +1) (35 B0 +15,0B') = 27295 0B (4.11)

0 Ho

Exploiting the transmission conditions (4.4)-(4.5) as well as the potential ansatz (4.2) for k = 1, we moreover
infer that

K1 ~o,(0) — . .
70(()10( )’YNH 0 <\I’%N 0Jo T+ \I/%K ,1.]1)
251 r 1 !
Ko ,(0 - . . KO — i
+- (MSB( '+ I) 7D,0 (‘I’%Hl,oJO + ‘I’%Wlh> =2 p,oE.
0 Ho
Finally, the identities (3.11)-(3.12) give rise to the boundary integral equation

R1 ~a,(0 a,(1 Ko a,(0 o, (1) ] »
{Coo( ) (Moo( '+ I) +— (Moo( '+ I) Coo( )] Jo
i Ho (4.12)

+ [“cgd@)Mgf“) + 2 (M@ +1) cg‘f”] =20 g
M1 Ho Mo

on I'¢. Similarly, we obtain boundary integral equations on I'y_1 and I'y, k € Keyen \ {IN — 1}. Indeed,
we separately apply the Dirichlet traces 7, ,_; and 7$k to the electric field Ex, £ € Keven \ {N — 1},
represented as in (4.2). Using (3.11)-(3.13), this leads to

Bk [ ~a(k) _+ o, (k)  +
T Ck—l,kuN,{k,kEk + M7 D Bk

(k) — ,(k) — _
+Cl?fl,k717Nnk 1Bk + (Mljéq,kfl - I) ’YD,quk} =0
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and
Rk k (k) — J(B)
- ﬁ C o )7Nn k:Ek + (M o) + I) VS,k;Ek + Clilg—)l’yNHk,k—lEk + Ml?,k(—)ﬂD,k—lEk =0,
where we additionally multiplied both equations by 2ky /1. Next, we insert the transmission conditions (4.6)-
(4.7) as well as the electric potential ansatzes for E;_; and Ex11 from (4.2) into both equations to arrive

at

Rk4+1 ~o,(k)  — . .
— C,” g + Ug
lst kfl,kpyNnkJrl,k EKHl,k.]k E~k+1v’f+1']k+1

o, (k) . .
- EMk 17D k (‘I’%Nkﬂ,k.]k + \Ij%,{kJrl,kJrle-l-l)
k)

Kk—1 ~o( a . a .
+ m le 1,k— 17N,% k=1 (\I’Enkil,k—QJk—Z+\I’E,€k71,k—1.]k:—1

K (K . )
+ i (M;?_(L)k—l - I) V]Jg,k_l (\I’%Kk_lyk_QJk—Q + \IJ%%_Fk_le_l) -0

and

RE+1 J(k
_ C:k( )’Y]l]i_ﬁk’k (‘I’Eﬁk kTt \PE,% 1,k+1Jk+1>

HE+1
Rk a,(k) + . .
_ ﬁ (Mkk + I) 7D7k (gj%ﬁk-‘—l’k']k + ql%nk+1,k+ljk+1)
Kk—1 ~a,(k)  — . .
+ - Ck,k—1'YN,%,k—1 <\I]%Nk71,k—2.]k72 + \Il%%ﬂ’k_ljkfl)

Kk o ray(k) _— . .
+ EM;:,k(—)lfyD,k—l <‘I’CEYRk71,k—2Jk72 + ‘I’%kal,k—ﬂkﬂ) =0.

Eventually, the technical identities (3.11)-(3.13) yield the boundary integral equation

Kk—1 (k) (k=1) . Kk ) (h=1) | .
Cply ot M2 k—)2 +— (Ml(:—l,k—l - I) 03—1,14—2} Jk—2

Be—1 © 7 ’ Mk

Kk—1 ~o,(k) s(k—1) Kk (k) (k—=1) | .

- Cl?q,kq (Mlil,kq - I) +— (Ml?fl,kfl - I) Ci?l,kl] Jk—1
L Hk—1 273

L [men Cz?’—(f,)k ( Ml?];(kﬂ) N I) Mk a,(k) Ckk(kJrl)] i
L Hk+1
Bt 1 () ok L Bk a) ponrn] o

+ Cel M Mk 1:Ch ki } Jkt1 =0
| k41 Kk

on I';,_1 and the boundary integral equation

Kk—1 k) 4 po(k—1 o, (k) o (k—1) | .
- cot Mk 1k) MkMk )Ck—l,k—)2] Jk—2

HE—1 kk—1
Kk—1 ~a,(k) J(k=1) (k) ~eo,(k=1) | .
- Cl(cl,kfl (Mlzil,kfl - I) Mkk 1Ck 1,k— 1} Jk—1
| HEk—1 HE
+ | BhtL g ) (M,f,;(’““) + I) 4 Bk (M,S‘,;(k) + I) C,‘j,;(k“)] ik
L ME+1 HEk

[ Kkl Ao,k k1) | Kk (k (1) ] .
+ evaRilly k(+1 )4 22 (M;:k( = I) C:,;SH )} jkr1=0
L Hk+1 Kk

on I’y for k € Keven \ {IN — 1}. Due to the characteristics of the potential ansatz (4.3) for Ex in G, the
boundary integral equations on I'5_1 for even N and those on I'n_o as well as on I'y_1 for odd N differ
slightly from the boundary integral equations derived before. The analogous ideas as already applied above
provide

(N J(N—1 .
M]C\XISL)N—I - I) CJC\YTELNL} JN-2

KN—-1 ~a,(N) a,(N—1) KN (
C M - —
LN_1 N-1,N-1""N-1,N-2 N
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KN—-1 ~a,(N o,(N—1 RN o, (N a,(N—1 .
- |:CN(1,)N1 (MNELNEI - I) - (MNEL)NA - I) CN(l,N)l] Jn-1=0
UN—1 UN

onI'ny_q foreven N,

KN—2 ~a,(N—1 (N—2) N—1 (N—1) (N=2) | .
- [ C%SQ,szMN 2,N-3 + 2 (Mﬁf—zN—Q - I) Cf\lr—z,N—:’)] JN-3
UN—2 HUN—-1

KN—-2 ~a,(N—1 a,(N—-2 RKN-1 a,(N a,(N—2 .
- [ CNSQ,NEQ (MN£2,N22 - I) + (MN(2 N) - I) CN(2,N)2] IN-2
UN—2 HUN-1

KN ~a,(N-1) (N=2) KN-1 (N=1) () . _
+ [ C]%/—2,N—1 (MN N1t I) + M]%I—Q,N—lc?\éf—l,N—l] JN-1=0
UN MUN-1

onI'n_o forodd IV, and

KN-2 ~a,(N=1) ~,a,(N=2) | KN—1, ,a,(N=1) ~a,(N=2) | .
- [ CNfl,N72MN a.N—3 T MNl,N2CN2,N3:| IJN-3
HUN-—2 HUN-1

KN-2 J(N-1) ,(N—2) KN-1 J(N—1) J(N=2) | .
- [ C]?/—l N-2 (MN QN—2 I) MJ%/—l,N—zc'JC\YI—Q,N—z] JN-2
N2 MUN—1

KN ~a,(N a,(N KN-1 N
+ [CN(—L)N—I (M Dy + 1) + 25 (g 1) oy 1] N1 =0
KN HN-1

onI'y_q forodd V.

4.2 Structure of the system of linear integral equations

For an even number of interfaces IV, the linear system is structured as follows:

.i() 2;)0 D 0
k0 ok J1
* % jo 0
x % J3 0
* ok k% = , (4.13)
' IN-4 0
JN-3 0
oo IN—2 0
* k) \JN-1 0
3 Mcexven
where the nonvanishing coefficients of MSV" are given by
K
(Mgvenh 1= *000(0) ( (()38(1) + I) + ;70 (M(%(O) + I) ng(l)v
’ 0
K
(]\4Oelven)1,2 _ Ecﬂd(O)Mﬂf( ) + Ig (Mgéd(o) + I) Cg£(1)7
RKN—-1 (V) ,(N-1) KN J(N) ,(N-1)
(Mgven)N,NA = _HNilc]%ffl,NflM]?ffl,NfZ - ,UiN <M]%/71,N71 - I) 0;71,1\/727
n RKN-1 (V) ,(N-1) RN J(N) J(N-1)
(Mg )N,N = C]C\MT—I,N—I (M]?Z—I,N—l - I) - (M]O\ZI—I,N—I - I) C]C\Y/—I,N—l
HUN-1 KN
and
n _ a,(k+1) 7 ra,(k) Kk+1 a,(k+1) a, (k)
(Mg )k—i—l,kz = Ckk Mk k-1 (Mkk - I) Ck,kfb
,Uk M1
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Rk ~a,(k+1) a,(k) KEk+1 o, (k+1) a,(k)
even _ ) ) ) )
(Mg )k+1,k+1—_*ckk My =1) = My -0 O
j Hi+1
Kk+2 ~a,(k+1) a,(k+2) RE+1 4 rog(k+1) ~o,(k+2)
(M;VGH) — C B M ) +I + M ’ C ’
k+1,k+2 kk+1 k4+1,k+1 kk+1  “k+1,k+1
+1,k+ L4 + +1,k+ [t + +1,k+
KEk42 ~a,(k+1) 3 ro,(k42) | BEk4+1 5 ro,(k+1) ~a,(k+2)
(Meven) — C ) M ) + M ’ C )
k+1,k+3 kk+1 k+1,k+2 kk+1l  “k+1,k4+20
a +1,k+ L2 + +1,k+ [t + +1,k+
Kk ~a,(k+1) 4 ra,(k) Rk4+1 4 ro,(k+1) ~ao, (k)
(Meven) - __ M ) ) o M ) C )
k+2k k+1,k kk—1 k+1,k  “kk—1
o R T g1
Kk ~a,(k+1) a, (k) Rk+1 4 ro,(k+1) ~a,(k)
(Meven) - __ M ) M ) _I _ M k] C ’
E+2,k+1 k+1k kk k+1,k “kk
o R e T fug1 T
KEk+2 ~ao,(k+1) o, (k+2) Kk+1 a,(k+1) a,(k+2)
even _ ) ) ) ’
(M) gyohro = ers Cretrerr \Mppipin 1)+ et My e 1) Ol ks

KE4+2 ~a,(k+1) 5 ro,(k+2) Kk+1 a,(k+1) a,(k+2)
even _ ) ) ’ )
(M) gyoprs = s Crit kM pia + ot My T 1) Ol iie

for k € Kogq \ {IV — 1}. Lemma 3.7 implies that

_1 -3
(Moe(ven)lyl . Haz(diVI‘,Pl—l) — Ha2(diVF,P0) forl € {1,2}7

_1 _1
(M" ) yn—y : Ha* (dive, Ty —j—1) = Ha * (dive, I'y—1) forl € {0,1}

and, for k € Kogq \ {IV — 1}, that

1 -3
(Mgven)k+1,k+l :H, 2 (divr, Fk+l—1) —H,? (diVD Fk)

N N forl € {0,...,3}
(Moelven)k-+2,k+l,1 : Hoc ? (diVF7 Fk+l72) — HO& 2 (diVFa Pk+1)
are bounded linear operators.
For an odd number of interfaces IV, we have a system structure of the form
* . S
* ok '!O _%VD’OEI
* * % -!1 0
J2 0
* ok X . 0
¥ %k J3
: = : , (4.14)
* ok ‘!N_4 8
* ok ‘!N_?’ 0
* ok ‘!N_Q 0
% % JN-1
=: Mgdd
where the nonvanishing elements of the matrix MOLOdd are given by
dd
(Mao )1 1 - (M;ven)l,l ’
dd
(Mao )1 2 - (Moe‘ven)lﬂ’
dd _ KN-2 ~a,(N-1) a,(N—2) KN-1 a,(N—1) a,(N—2)
(Mg )N_l N2 _,U«N72 CN72,N72MN72,N73 - N1 <MN72,N72 - I) CN72,N737
KN—-2 ~a,(N-1) a,(N-2) RKN-1 a,(N—1) a,(N—2)
M) _ vz (u 1) - ALy e
( o JN_1N-1 LN —2 N—2,N-2 N—2,N—2 N1 N—2,N—-2 N—2,N—2>
dd _ KN Oc,(N—].) av(N_Q) KN-1 av(N_]') av(N)
(Mao NN MTVCNQ,NA (MN71,N71 + I) + N My o N21ON 21 N—1
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(0299 o = ~ RS0 M, — S S, 2
(M) = 2, (MR, 1) - MR, 0,
(4) = RS0, (R 1) 20 (552, 1) R
and
() = I (M5%) 0= I s
(Ma()dd) RALibl (M) kg1 1 s (Mgdd> Rt2ktl Ma sk
(Mgdd) helit2 (M) kg1 k125 (Mgdd) Rt2kt2 Ma" s pr2-
(Mgdd) s — ( 2ven)k+1’k+3’ (Ma[)dd) ki 2.k43 = ( oezven)k+2,k+3

for k € Kogqq \ {IN — 2}. Again by Lemma 3.7, they give rise to bounded linear operators

_1 -3
(MaOdd)u : Ho 2 (divy, Ty—q) — Ho ? (divp, To) forl € {1,2},

)

_1 .
)N—l,N+l—2 : He ? (divy, I'ygy—3) = Hy ? (divy, [y _2)

1 -3
(Mgdd) NN H, ? (divr, I'nyi-3) = Ha® (dive, Ty—1)

«

( pyodd
for

le{0,1,2}

and, for k € Kyqq \ {IV — 2}, to bounded linear operators

_1 -3
(Mgdd) :Ho ? (divp, Tiyg—1) = Ho ? (dive, Iy
k+1,k+1 forl € {0,1,2,3}.

1 -3
(Maodd) krzpaio1 DO (divp, Tqi-1) = Hao* (divp, Tq1)

Remark 4.2. In the special case that the multilayered scatterer just consists of one interface, i.e, N = 1, we
observe that system (4.14) reduces to the singular integral equation

oG (Mg + 1) + (Mg ® +1) € = =295 B! with pr = Z ?Z;

This corresponds to the main boundary integral equation in [6], which has already been studied extensively
therein. In this paper, we therefore only consider “real” 2 -biperiodic multilayered structures consisting of N > 2
scattering profiles.

4.3 Structure of the adjoint system of linear integral equations

Next, we reverse our previously considered potential ansatz (4.1)-(4.3): Eq is now assumed to be an a-
quasiperiodic electric potential applied to an unknown density jo € H&W(divr, [p). Inthe layers G, k € K,
we alternate an a-quasiperiodic Stratton-Chu type integral representation in the sense of Lemma 3.13 and a
two-term a-quasiperiodic electric potential ansatz with the unknown densities ji € H;”Q(divr, Iy) (ke Kif
Nisevenork € K\{N —1}if N is odd). The field E y traveling in the bottom layer G is either represented
as a simple a-quasiperiodic electric potential applied to the unknown density jy_1 € Haw(divr, Iy_q) if
N is even, or as a Stratton-Chu integral given by Lemma 3.12if NV is odd. In summary, we assume that

Eg = \IJ%KO,OJO (4.15)
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in G,

(

Vg, kb1 +VE ik for even k,
5 g k Y k
2\ Frf b B Meg B 1D.R B for odd k
o \Ij%nk,kflnynk,kflEk - ‘I’?Aﬂk,kfl’YD,k,lEk)
in G fork € K,
1 « — a _
D) (‘IJENN ,N—l'YNKMN_lEN + ‘IIMNN,N—I’YD,N—lEN> for even N,
Ey = (4.17)

\I'%KMN—JN—I for odd IV

in G . Based on this potential ansatz, we again obtain two systems of integral equations depending on the
parity of the number of grating interfaces IN. They turn out to be a useful tool in the analysis of the integral
equation systems (4.13) and (4.14). The detailed derivation is not carried out here since it is very similar to the
one leading to (4.13) and (4.14).

If N is even, the system has the following structure:
Jo
J1

*
*

R R S
I

J3
* ok x | =1£, (4.18)
' N—4
k ko ok ok JN-3
JN-2
x/ \JN-1

— even
=W

with the nonvanishing elements

even K/O a, 1 (6N 0 K’l {0 1 (&N 0
(W) 11 = *Coo( ) (Moo( ) - I) +— <M00( ) - I) Coo( ),
Ho 241
even RO ~a,(1 a,(0 K1 5 ra,(1) ~o,(0
(W ™)g 1 = 7010( ) (Moo( ) - I) + 7M10( )Coo( )
Ho M1
even KN ~a,(N-1) a,(N KN—-1 ;3 ra,(N—=1) ~o,(N
(Ws )Nfl,N = _7CN£2,N—1 (MN—l,)N—l I) - MN—Z,N—lcN—l,)N—l’
UN HUN—-1
even RN ~a,(N—1 o, (N RKN—-1 a,(N—1 o, (N
W™ vy = *7CN£1,N11 (MNEI,)N—I I) - <MN£1,N—)1 + I) CN£1,)N—1
UN HUN—1

and

Kk+1 ~a,(k) s(k+1) Kk ,(k) s(k+1)

Wk kr1 = T en Cl?—(l,k <Ml?k( + I) - ﬁMg—(I,kCI?k( )
RE+1 ~ou(k J(k+1 Kk J(k J(k+1

W™ g1 p1 = — Cl?k( : <Ml?k( '+ I) o (M’?k( '+ I) C’?’“( )’
ME+1 M

Rk4+1 ~a,(k+2) a,(k+1) Rik42 a,(k+2) a,(k+1)
even — ) ) b b
W ks g1 = et CerprmaMei gy '+ ers My — 1) Oy s

RE+1 ~a,(k+2) 4 ro(k+1) | Fk+2 5 ro,(k+2) ~o,(k+1)

even — k] ) ) k)

W kssprr = CrlopiaiMiing ~ + My 5ok Crii g
ME+1 HE+2
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k—1,6™ k k1 k—1,k%kk+1
HE+1 ’ S e Rk
REk4+1 ~o,(k) 4 ro,(k+1) Kk a, (k) a,(k+1)
even _ ) ) ) )
W kst kg2 = — Cor My — — (Mg +1) Gy s
Hi4+1 i
Kk+1 ~a,(k+2) a,(k+1) KE+2 a,(k+2) a,(k+1)
(Wvem) =0 M —-1I)+ M, -I1)C.
k+2,k+2 k+1k+1 \ M et1 k+1 k+1,k+1 k+1,k+17
+2,k+ fpgr Rk +1,k+ Lirso +1,k+ +1,k+
REk+1 ~a,(k+2) o, (k+1) RE+2 5 ro,(k+2) ~a,(k+1)
even _ ) ) _ ’ )
(e )k+3,k+2—rk+1ck+2,k+1 My psa =1 +Mk+2Mk+2,k+1Ck+1,k+1

fork € Koqqa\{N—1}. Theright-hand side f,, = (fa1, ..., fan)’ € [Th_g Ha''*(divy, T'}) is composed
of the following two-dimensional vector fields:

Ko 1 : K1 1 .

fo1 = o ool )VﬁO,OE‘ o (Mg)g( ) _ I) ST o (4.19)
RO ~a,(1 i, K1 (1 i

fa2 = —Cfg! )’Yf\?,io,oEl + = Mg )’Y]Jar,oEly (4.20)
Ko M1

for=0 fork=3,...,N. (4.21)

)

With Lemma 3.7, we observe that

_1 -1

(sten)l,l :H, 2 (divr,To)  — Hg 2(divp, T 1) for [ € {1,2},
_1 -1

(W) y_yn s Ha? (divy, Ty—1) — Ha 2 (dive, Ty—y1) forl € {0,1}

a

and, for k € K,qq \ {N — 1},

_1 -3
(I/Veven)'IH_UH_1 :H, 2 (din, Fk) — H,? (diVI‘, Fk+l—l)

«

1 1 forl € {0,...,3}
W™ ki—1 g2 Ha ? (dive, Tiy1) — Ho * (dive, T—2)

are bounded linear operators.

If the number of grating interfaces IV is odd, our potential ansatz leads to a system of the form

* % )
Xk ‘!0
% % '!1
EOE 3 ‘!2
* ok J3
: =f,, (4.22)
EE ‘!N74
“ .!N—3
N .!N—Z
JN-1
= Wgdd
where the nonvanishing elements of the matrix ngd are given by
(ngd) — (]wgven)171 ,
1,1
dd
(W), = (),
KN—-1 ~a,(N-2) a,(N-1) KN—-2 3 ra,(N=-2) ~o,(N—1)
WOdd) — _NAa (M n 1) _BN=2 C ,
( @ JN_aN-1 N1 N—-3,N—2 N—2,N-2 [IN—2 N-3,N—2YN—-2 N—-2
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N

ad KN-1 o, (N—2 J(N—1 KN-2 (N=2) (N=1)
(ch )N_l N1 == C]C\YIEZ,NZQ <M](\X/£2,N22 + I) - (M]O\[f—2,N—2 + I) C]?/—Q,N—Q’

HN—-1

(WOdd) :KJNfl
* JNN-1 pun_1

(Wodd> _
* JN-2N

Cav(N)

kN2 Ma,(N—2) Ca,(N—l)

HN—2

N—-1,N—-1
) NN

a,(N—1 RN a,(N—-2
MNELNEQ +— (MN£1,N21 - I) C

O‘v(N_l)
N—1,N-2>

RN-1 Ca,(N—Q) Ma,(N—l)

N-3N-2UN_2N-1 N-3N-2MN_2 N1
HUN—2 HN-1
dd KN—-1 ~a,(N-2) a,(N-1) RN—-2 a,(N—-2) a,(N—1)
Wo ) = _fN-lo M _ M +1)C
( o Jn_in i 2NN NS T T N-2,N—2 N-2,N-1°

(Wodd> _ kN1
@ N,N  UN-1

and

(WO‘Odd) kok+1 = (.

(ngd> k+1,k+1 = (.

a,(N)

(N J(N-1) KN
C]%f(—l,)N—l (M]C\Yf—l,N—l - I) +— (MN—l,N—l -

uN

even)
a kk+1>

even)
« k+1,k+1>

(wer) =,
k42

(W) - (W,
k41,k+2

a,(N—1
I) CNSI,Nzl

even)
a kk+2>

even)
« k+1,k+2>

Wodd) — (Teven (Wodd) — (WWeven
( ¢ ) kt2,k+1 W ksz ¢ S kt2,k+2 o ka2 k2
Wodd) — (TVeven (Wodd) — (Weven
( a k3 k+1 ( a )k+3,k+17 a k-3 k+2 a )k+3,k+2

for k € Koaqa \ {N — 2}. The components of the right-hand side f,, which lies in the product space
H,]CV:_Ol H,'/*(divy, T}), are specified by (4.19)-(4.21). By Lemma 3.7, the nonvanishing elements of Wodd
give rise to bounded linear operators

_1 _1
weodd) L H, 2 (divp,Ty)  — Hy 2 (divp, 1) forl € {1,2},
* Jia
1 1
odd K 2( A H_§ : T
(Wa >N+lf2,N—1'Ha (divr, I'yv—2) = Ha* (dive, Pvyi-s) |
le{0,1,2}

L 1
dd N 1
(Wg )N+l727N . Ha 2 (leF, FN_l) — Ha 2 (lel", FN-H—?))
and, for k € Koqq \ {IN — 2}, to bounded linear operators

_1 -3
(ngd) tHo ? (dive, I'y) = Ho * (dive, Igy—1)
k1, k1 forl € {0,1,2,3}.

_1 -3
(W"‘Odd) brl-Lkt2 H, * (divp, Trq1) = Ho ? (dive, Trq-1)

As the title of this section already indicates, the above described N x N operators W™ and W24 cor-
responding to the integral equation systems (4.18) and (4.22) somehow correlate in an adjoint sense with the
N x N operators M:"*" and Mgdd from (4.13) and (4.14). In what exact sense this should be understood is
explained in the following: Consider an incident electric field E' with the wave vector —a = (—au, —ag, as).
Then the potential ansatz in this subsection involving the densities ji € H:ZQ(divF, I'y), k € K, yields the
two integral equation systems (4.18) and (4.22) in terms of (—«) with the right-hand sides f_. The compo-
nents of the N x N operators defining these systems are all bounded linear integral operators with kernels
based on the (—«)-quasiperiodic Green function G(_ko)‘ With the help of Lemma 3.8, we now easily observe
that

By ((szen)lﬂ,jﬂj’ 1) = B; (jv (Wifn)j+1,l+l 1) )

B; <<M§dd)l+1,j+1j’l) =5 <j’ (ngd)j-&-l,l—&-l 1)



for all [ j € Kopaswellas all j € H_I/Q(din,I‘j) and 1 € H~!/*(divr, T}). Define the bilinear form
) TINS Ha 2 (dive, Tg) x [Ta—g HZY?(divr, Ty) — Cas

L= > By (r k), (4.23)

where B, is the bilinear form defined in (3.5) and the densities J, L are specified as

N-—1 N—-1
J = Grier, € || Ha dwr,rk) L= (lp)er, € [ H : 2(divp, Ty).
k=0 k=0

Then we can even formulate the adjointness of MS¥*™ and WY as well as of 299 and W°4d with respect
to ['7 ]

Lemma 4.3. For any wave vector «, the operators W '™ and W°44 are the adjoint operators of MV and
M2 with respect to the bilinear form |-, -] from (4.23). Thus, we have

[MEn3 L] = [J,WeL]  and [Mgde,L} - [J,WﬁidL]

forallJ € T[o o Ha'/?(divp, Ty) and L € 1y H_Y*(divy, T}).

4.4 Equivalence

The following lemma ensures the equivalence of the integral systems (4.13) and (4.14) to the electromagnetic
scattering problem (2.7)-(2.13). We recall that the constant py1 for k € K| is specified by

HiKk41

M1 K

Pk+1 =
Lemma 4.4 (Equivalence for the systems (4.13) and (4.14)). Let the vector-valued density
j:(jOajla'”vjN 1 E H H leF,Fk)

be a solution of the linear system (4.13) if N is even, or of (4.14) if N is odd. Moreover, let N > 2 and assume
that

N(c )_{0} N( (k+1))=N(ck+<f;il)_{0} fork € Koga \ {N — 1}

and additionally N'(C'y; 1)N 1) = {0} if N is even. Then the functions

1
o ot (5 41) 95,58
1 in Gg,
(1 (7 .
) [pl‘l’%no,oM&( )+ wg KO,OC&( )] g
E; = \I’%Hk,k—ljk—l + \I'%Kk,kjk inG
fork € Koddy
1 - ,(k—1 .
Ek = 5 [pk 1\11%Nk’k le (1 K )2 + \IlMﬁk,k IC]?_(L]C_)Q] Jr_2
L7 - (k=1 (=17 .
+ = {Pk 1\1/%,%,1471 (M]?_(Lk_)l _ I> + g ” ,kflc]?—(l,k—)l} k1
in Gk

2
L (k41 k+1)] .
_ 5 |:Pk+1\IJ%Kk7k (Ml?k( ) + I) + \I; M, kak( ):| ik
! (k+1 k+1)] .
2 [pkﬂ\l/%m JfMl?,k(H ) + ‘I’Mnk ,kck l£+1 )} Jk+1
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fork € Keven \ {IN — 1},

1 (N=2) 7.
17 _ N-2 : i
+ 9 [le—lqjganl,N—Q (MN(QN)Q - I) + ‘I’M,@N LN—- 2Cy (2N)2} in—2 inGN-1,
1 N-2 (N :
—5 [pN\If%nN,l,Nq <MN(1 Lt I) + ‘Pﬁw,l,N—lcﬁil,)N—l} IN-1
EN = \P%KNJV—le_I in GN
for odd N and
17 _ (N-1 .
EN:_i[le‘I/%,iN,N My (1N)2+‘I’ My, N— 1Oa(1N)2}JN—2
; inGp

—1 ,(N—1 .
—3 [PN \IJ%NN,N—I (MJC\YJSLN—)l - I) + \I'Mn N— 1Oy (1 N)l} IN-1
for even N solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if
N () =N (™) = {0} fork € Koaa
and additionally N'(C'y; 1)N 1) = {0} if N is odd, then any solution E of the electromagnetic scattering

problem (2.7)-(2.13) prowdes a solution of the integral equation system (4.13) in case of an even number of
interfaces N and of the integral equation system (4.14) in case of an odd number of interfaces N, respectively.

Proof. We first consider the situation that a density j = (jo,j1,-..,jn_1)" € HkN:_Ol H,"*(divy, Ty)
solves the integral equation systems (4.13) if N is even, or (4.14) if N is odd. Then the functions

Ey = V§, ooidi—1 + VR, ik in G, k € Kogd, (4.24)
and additionally

En =Ygy 1in-1 in Gy (4.25)
if N is odd are solutions of the time-harmonic Maxwell equations curl curl E — Iik, = 0 in G and of

curlcurl E — /@NE = 0in G, respectively. This is easily justified by Lemma 3.6. We recall that these rep-
resentations are unique according to Lemma 3.14 and the assumptions of this lemma. The mapping properties
of the Dirichlet trace and the Neumann trace by (3.4) imply that

1 1
k1 Bk N, o1 Br € Ha? (divp,I'x—1) and ’YS,kEkKYﬂ?ﬁk,kEk € Hy, ? (divp, I'y)

for k € K,qq. Moreover, we observe by (3.4) that o.N-1EN N, v BN € H,'*(divp,Ty_1) if N'is
odd. Hence, the functions

1 . g .

Ey = 3 <P1‘P%NO,O’YNK1 ,0E1 + ‘I’g/lﬁo,O'YD,oEl) in Gy, (4.26)
1

E; = 5 (pk-i-l‘l’%mk’k’}/gnkH’kEk_*_l + \Illl;\y/lmk,kr)/]J)r,kEk-&-l

iN GreKeyen,  (4.27)
-1 _ _
Pk \Il%nk,k—lryNnkil,kflEk’—l - \Illo\t/lnk,k—l’yD,kflEk—l)

and, if IV is even, also

1

Ey=7 (pEIW%KN,N—171§

5 N1 En—1+ Uy

N_175,N_1EN_1) in Gy (4.28)

KN-1> FN-1°
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solve the time-harmonic Maxwell equations curlcurl E — HOE = 0in Gy, curlcurl E — /ﬁjk = 0in
G, k € Keven, and moreover curlcurl E — IQ?VE = 0in Gy in case of an even NN, respectively. This
goes back to Lemma 3.6. Furthermore, the latter lemma yields that the fields Eg and Ey for even N fulfill the
outgoing wave condition (2.12)-(2.13). Therefore, it remains to prove the validity of the transmission conditions
(2.8)-(2.11).

We first address the verification of the transmission conditions (2.8)-(2.9) across the grating interface I'. For this,
we apply the Dirichlet trace fyg o to the electric field Eq represented as in (4.26):

(3.11),(3.12) 1

B0 Y 2 (OO, 0B+ (M 1) A5 0B ) (4.29)

The trace expressions in (4.29) can be reformulated with the help of the potential ansatz (4.24) for k = 1 as

_ 311),312) all).
oo E1 (A1) _ (1).10 - Cof(l)Jl, (4.30)

~—

e JEi (3.11)£(3.12) _ (M&)’(l) +I) 3o — Mé"l’(l)h- (4.31)

K07

—+ 1 a.(0

+;[p1000<> 0‘(1)—1—(M ()—I)C’ ()}J1

Since the densities jo and j; satisfy the first equation of both the linear systems (4.13) and (4.14), i.e.,

K1 ~e,(0) (1) ko a,(0) a,(1)
[Mlcoo (Moo "’I) + m (Moo "’I) Cog ]JO

F1 qeo(0) g (1) o, (0) o)), 2R0__ o
+ [m Coo Moy (Moo JFI) Cor ]Jl S Yp,oE

we conclude that

— i 1 (4.30) — i _
VE,OEO =~k — (Ca( ).]0 + C'ol( )J1> =" —poE +1p k1

This corresponds to the first transmission condition (2.8) in the electromagnetic scattering problem (2.7)-(2.13)
rewritten in the form yp, (E1 = 7;5 oEo +7p oE"

For the proof of the second transmission condition (2.9), we recall the representation (4.26) of the electric field
E;. Exploiting the previously verified first transmission condition (2.8), we arrive at

1 _ o
Eo = 5 [p198,, 075, oB1 + U1, 0 (755,080 + 15,08 | (4.32
With the identities
1 . o
Eo = 5 (W8, 07500 + U1, 0%, oBo) and Wi 0150B = —9E, 015, o

which arise as special cases of the «a-quasiperiodic Stratton-Chu integral representation from Lemma 3.12,
equation (4.32) can be reformulated to

1 ; 1
+ — 1) _ —
5\11%%70 <7N~070E0 * 7N~070E) N §\Il%ﬂ070p17Nﬂ1 70E1

+
¥ 0:(3.11) (© 3 . (0 3
—— Cgo( ) (7§N070E0 + VNK070E1> = Cgo( )plf)/NH170E1
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The assumption that N(ng(g)> = {0} already ensures that ng(o) is invertible in H,'/*(divr, T'g) due to its
Fredholm properties given by Lemma 3.9. Therefore, we deduce that

PIIN,, 0B =, 0Bo + 9, oE
i.e., the transmission condition (2.9) holds.

Next, we simultaneously derive the transmission conditions (2.10) and (2.11) across the surfaces I" and I';, for
k € Keven. The argumentation resembles the one seen above. We apply the Dirichlet traces Vp.x_1 and 'yfg i
to the vector field Ej. represented as in (4.27), which gives rise to

- L1 e (k) a, (k) -
Yo k—1EBr = 5 (Pk Cel k1N, g1 Brer t (Mk—l,k;—l + I) Vp k-1 Er-1
2 " ket " (4.33)
a7
_PkHCk 1 k’YN,% iy pEkt1 — Mk—LWIJ)r,kEkH)
and 1
1K) — (k) —
’% KBk =5 (Pk 1CI?I§—)17NN p—1Bk—1 + Ml?lc(—)17D h—1Ek-1
’ 2 ’ kot (4.34)

(K
—Pk+101?k( )7§%+1,]€Ek+1 - (Mk:k( = I) D kEk+1)

For this, we in particular used the identities (3.11)-(3.12) and (3.13). With the help of the representation (4.24)
in terms of the indices £ — 1 and k + 1, it is now possible to rewrite the Dirichlet and Neumann traces of E_
and Ey 1 occurring in the expressions (4.33) and (4.34) as follows:

(3.11),(3.13)1  ~a,(k—1) .

k—1
VIJJr,k—lEk—l = k—1,k— 2dk—2 — Ck (1 & )1Ji<: 1s
(312),(3.13)1 a,(k=1) , ,(k—1) .
71—\1"_,ik71,k71Ek—1 = Mk 9Jk—2 — (Mqu k-1 I) JE—1,
) ~Cp Vg — ot ith#N-1
Vp xEr+1 = o (20) (4.35)
—CN ) N 1dn-1 itk =N —1,
k .
—(Mk,;(“)+> ~ My g kAN -1
Moy y kAL -
bt = (M 1) v ith=N—1.

We recall that the densities j;, | € {k — 2,k — 1, k, k + 1}, solve the kth and the (k + 1)st integral equation
in the systems (4.13) and (4.14). Exploiting this after inserting the expressions (4.35) into (4.33)-(4.34), we can
conclude that

r1Ek = Ck (fkl)z.]k 2= Ck (fkl)l.]k 1 (42 'Y]J)r,kﬂEk—l fork # N —1,
o.N2EN-1= N(];[Nz) 3IN-3 — C]O\;,E];[;VQEJN—Q = To.N_2EN—2
and that
’Y]er,kEk = —C?é(kﬂ)jk - Ck ;gﬁl).]kﬂ (4.2 VB,kEkH, fork # N —1,
B =~V v 2 B

This proves the transmission condition (2.10) for k € K if N isodd and for k € K \ {N — 1} if N is even.
Thus, we are left to verify the transmission condition (2.10) for the index N — 1. Applying the Dirichlet trace
Yp.n—1 1o En, given by (4.28), yields

1 (N)

— — 5 N )
TN BN = D) (pNIC]O\KZSIJ)V—lfyl—\iI_HN_l,N—lEN—l (M]C\Yf—lN—l + I) 7$,N—1EN—1> (4.36)
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with the help of (3.11) — (3.12). Inserting the expressions (4.35) for the traces vy N N_1ENn_1 and
K —1?

'yf)r ~_1EnN_1in (4.36) and exploiting the validity of the /N'th equation of the integral equation system (4.13)
leads to

_ (N=1) . (N-1) . (4.35)
'VD’N_lEN = - ]%[(_17N22JN72 - C?\[[(_LNZL]N*I = 'VIJ)ryN_lENfl-

This clearly corresponds to the desired transmission condition.

Next, we turn to the proof of the transmission condition (2.11). First, consider an index k € Keyen. We insert
the transmission condition (2.10) into the representation of the field E;. as in (4.27) to obtain

1 - +
Er =3 (pk+1‘1’%,€k,k’YNnkH,kEk+1 + qj?ﬂﬂk,k'YD7kEk)
1 —I\I/a + E P - E
T 5 Pk VB k1N, k-1 k=1 T YN k1D -1 B ) -
Identifying this equation with the Stratton-Chu type representation (3.16) of E; guaranteed by Lemma 3.13
yields

Vg, (ﬂk+1’YNﬁk kBR — Vak,kEk) =VUgE, k1 (Plzl’YNﬁk Lk VNNM_lEk) :
Since
pk+17§% 1,kEk+1 — ’Ylilrnk,kEk c H;%(divF,Fk) and
PR k1~ gt B € Ho 2 (dive, Tiy),
we deduce from Lemma 3.15 that
e, h (P17, Brin =%, o Br) =0 and (4.37)
g e (P ke = 1B ) =0 (4.38)

At this point, we call attention to the fact that the operators C’,?,;(k) and C’Z;(f)kfl are invertible because they

are Fredholm operators of index zero by Lemma 3.9 and N (C|, (k)) = /\/’(Cg;(f)kfl) = {0} by assumption.
We now apply the Dirichlet trace 'yD ;; 10 (4.37) and the Dlrlchlet trace vp ;,_ to (4.38), respectively, to obtain
(4.37) _ (K _
0 =" k‘I’%nk k (Pk+1’YNﬁ Rkl — ’Ylilrﬁ kEk> = _C?k( ) (PkH’YM pErt1 — ’Yﬂ?ﬁ kEk>
5 k+1° k? k+1° k>
and
(4.38) _
0" ="7p 5 1VE., k-1 (pk VN,% k1 T N 1Ek>
_ _ (k) —
el e 195, k-1 (Pk VNK,C k=17 'YNHk,quk—l) :

Exploiting the invertibility of the operators Ckk( ) and C,?’_(f)k_l eventually gives

- — At —1,+ A
Pk+17Nﬁk+l,kEk+1 =MW, kEE and o = I k1 B

This validates the transmission condition (2.11) for £ € K if N is odd as well as for k € K \ {N — 1} if N
is even. Thus, only the proof of (2.11) for the index N — 1 for an even number of interfaces [N remains open.
We treat this case analogously. We start by inserting the transmission condition (2.10) into the representation
(4.28) of the electric field E :

1/ _
En = 3 (le\I’%&N,N—l’VKIF

KN_—1°

N1 En-1+ \I’K/INN,N—IIV]SJV_lEN) :
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By Lemma 3.12, we have an alternative representation of E via the a-quasiperiodic Stratton-Chu integral
representation that we can insert above. We arrive at

@ —1_+ o _
Vg, N1 <PN Moy N-1EN-1 VN,@N,N—IEN> 0

DN -1 o (N) —1+ - _
= —OyTinva (PN MWy No1EN-1 = 'YNKN,N—lEN) =0.

The invertibility of the Fredholm operator of index zero C'y/ o 1)N 1 justified by ' (C (J;T)Nfl) = {0}, then
yields

PN W,y No1EN-1=9y, v BN
This corresponds to the transmission condition (2.11) for the index N — 1 if N is even and therefore completes
our consideration.

Next, we assume that a solution E of the 27-biperiodic multilayered electromagnetic scattering problem (2.7)-
(2.13) is given. We denote by E, the restriction of the electric field E to G, k € K(]]V. Lemma 3.15 and its proof
imply that for every k € Keyen, there exist two unique densities j_o and jr_1 lying in Hy'/?(divy, T'y_o)
and H,'/*(divp, T'x_1), respectively, such that

. 1 _ _

\P%nk_l,k—Q.}k—Q - 5 (\I]%Nk_l7k—2’yN“k—17k_2Ek_1 + \IJIC\Y/[Kk_17k_2’YD7k_2Ek_1> 5 (439)
; 1

‘l’%ﬁk_pk—ﬂk—l Y (‘Ij%ﬂk_l,k—ﬂ;llk_l,k—lEk—l + \I’?/Iﬁk_l,k—l’ﬁk—lEk—l) (4.40)

holds. From the assumption that A/ (C), " §k1)2) N(Cy (fkl 1) = {0} and the fact that the boundary integral

operators C,C’_(2 ki)g and Ck’_(l ki)l are Fredholm operators of index zero according to Lemma 3.9, we deduce

that the latter are also invertible in H&l/Q(din, I'k_2) and H&m(divr, I';._1), respectively. With this, we
easily derive, that

. ] - (k—1)\ ! k—1
2 =5 [VN%_l,k—QEk—l + (CI?—(zk—)z) (Mk: o +I) Dk 2Bk 1} )

. 1 (k—1) ) ! (k-1
Jek—-1 = 5 |:’y1_\1‘_”k17k_1Ek1 + (C:—(l,k—)l) (Mk(:l—(l,k—)l - I) ’YS,k_lEkl:|

after applying the Dirichlet trace v ;. _, to (4.39) and 'yfg s_1 10 (4.40), respectively. It remains to show the

existence of the density jy_1 € H,'? (divp,T'y—1) in the case that N is odd. Then we can represent the
electric field E as

— o 4
Eyx = \IIE,,@N,N—L]N—I

and conclude that

iNc1=— (Cﬁ’gi)]v_l)il Ey

due to the invertibility of C'y, (1N L by N(Cy (N) 1) = {0} and Lemma 3.9. Going back to the derivation
of the integral equation systems (4.13) and (4.14) presented in Section 4.1 clearly reveals that the densities

jx € Hy'?(divy,T'y), k € Ky, solve the before mentioned systems of integral equations. O

We arrive at a similar equivalence result for the adjoint systems (4.18) and (4.22). In order to enable a readable
formulation of this equivalence, we distinguish between the cases N = 2 and N > 2.
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Lemma 4.5 (Equivalence for the systems (4.18) and (4.22), case N = 2). Let N = 2 and let the vector-valued
density j = (jo,jl) € Hk oH 1/ 2(divF, I'k) be a solution of the linear system (4.18). Moreover, assume
that

a,(1 a,(1
N (Coo( )> :N(Cn( )) = {0}.
Then the functions
EO = \If%nojojo in Go,

17 _ (0 (0
E, = B [P1 I‘I’%M,o (M(%( /- I) + Wir, OCO 0 )}
1
3 [/)2‘11%51,1 (M{xf(m + I) + U
171 _ (1 1
E; = — B [pg I‘II%R271M%( )—|— Ui, ICQ( )}
1

_ (1 nl .
= oo (" — 1) a0

in G,
a,(2) ] .
1011( )} J1

K1

in Gy

solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if
a,(0 a,(2
N<Coo( )) - {0}7 N<C11( )> = {0}7

then any solution E of the electromagnetic scattering problem (2.7)-(2.13) provides a solution of the integral
equation system (4.13) for N = 2.

Lemma 4.6 (Equivalence for the systems (4.18) and (4.22), case N > 2). Let N > 2 and let the vector-valued
density j = (jo,j1,-- - jn-1)" € [Tnog Ha'/?(divr,T}k) be a solution of the linear system (4.18) if N is
even, or of (4.22) if N is odd. Moreover, assume that

N (C’,?’_(f)k_l) =N (C?,;(k)) = {0} fork € Kyqq

and additionally N'(C'y" 1)N 1) if N is odd. Then the functions

Eo =i “0’0']0 in Gy,

E, = % [pf Vg, 0 (Moo( - I) + wml,ocgd@} jo )
- % [PQ\I’%MJ <Mix17(2) + I) + ‘I’lc\y/[,ﬂJCill’(Q)] j1 inG1,
B % ['OQ\IJEm M5+ ‘I’%Kl,lcfé(2)] J2 J

Ej = % [p; g ME D+ ﬁ/&wk,lc,j‘ffﬁg] iks
+% [Pi;l‘l’%wk—l (Mk: (fkl)l - I) + UL, ke 101?’,(5;?1] Jk—1 o
_ % [pkﬂw%mk,k (M,?,;(kﬂ) i I) U chkk(kJrl)} i in Gy,
B % [karl\Ij%nk,leca,}sﬁl) + Vi, +Ch ,C(Jl)] Jkt1

fork € Koga \ {1, N — 1},
Ep = Vg, r-udk-1+ VR ki Gy
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fork € Keoyen,

11— N 2 2) 1.
En-1= ) [PN1—1‘I’%KN 1 N= 2 My~ N )5+‘I’MNN N— 2CN(2N)3} IN-3
1 J(N—2 N-2 ;
Ty [le 1 VB, N2 (MJC\YIEQ,N—)Q - I) + W, N QCN(Q N)21| jn—2 pinGN_1,
1 N-2 (N .
) [PN\I’%ENA,N—I (MN(I N )1 + I) + \I'ﬁl,wil,]\l—lc]c\y/;?]v_l] JN-1
Ey = \P%H]WN—LjN—l in G
for odd N and
LT _1ga a,(N—1) o, (N~1)
ENZ—i[ Vg, N1 My v+ Wi, N O N 2}JN 2
7N_1 .
2 [leq]EHN,N 1 <MXC[£1’N,)1 - I) + \I/a N N— 1C (1 N)1:| JN-1

for even N solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if
N(Cg) =10}, N(CpED) =N (CUt) ) = {0} fork € Koaa \ {N — 1
w ) =10}, Kk = w1kt ) =10} fork € Koaa \ { }

and additionally N (C ( l)N 1) = {0} if N is even, then any solution E of the electromagnetic scattering
problem (2.7)-(2.13) prov;des a solution of the integral equation system (4.13), in case of an even number of
interfaces N, and of the integral equation system (4.14), in case of an odd number of interfaces N, respectively.

The proofs of Lemmata 4.6 and 4.5 are based on the same ideas as the proof of Lemma 4.4 and are therefore
left to the reader.

5 Solvability of the system of integral equations

In the rest of this paper, we want to discuss the solvability of the linear integral equation systems (4.13) and
(4.14). Since the potential approach applied here arises from the extension of the combined potential ansatz in
[6] for electromagnetic scattering by a single 27-biperiodic grating profile, we can also adapt the techniques of
proof employed in [6]. We first verify that our integral equation systems are Fredholm of index zero under quite
general assumptions on the electromagnetic material parameters if the grating interfaces of the considered
multilayered structure are smooth, and under more restrictive assumptions if they are only polyhedral Lipschitz
regular. Then it is possible to entail the existence of (possibly unique) solutions to (4.13) and (4.14) depending
on the values of the electric permittivity and the magnetic permeability in each of the material layers. The
uniqueness of solutions to the integral equation systems is separately studied with the help of a variational
argumentation. The solvability of the integral equation systems (4.13) and (4.14) contributes to the proof of an
existence result for the recursive integral equation algorithm derived in [7].

5.1 Fredholmness

Below, we study the Fredholm properties of the linear integral equation systems (4.13), (4.14), (4.18) and (4.22).
Our main result states that the left-hand sides of these equations e, MEven, M? odd , WY and WOdd are
Fredholm operators of index zero in the Hilbert space Hk 0 LH, 1/2(d1V1“, Fk) under certain assumptions on
the electromagnetic material parameters.

26



Theorem 5.1 (Fredholmness). Assume the electromagnetic material parameters €y, i, k € Kév , of the
considered 27 -biperiodic N -layered structure to satisfy (2.2) such that

€kl # —€x and ppy1 #F —p fork € Ko
holds ifI'y, is smooth, or
Re(e) Re(€xt1) + Im(ex) Im(ext1) > 0 and  Re(uy) Re(pur1) + Im(pg) Im(pag41) > 0

holds if 'y, is only polyhedral Lipschitz regular. Then the N x N sized operators

N-1 1 N-1 i
M, MM s T] Ha?(dive, Ty) — [ Ha ® (dive, Ts),
k=0 k=0

weven pyodd . H H_ 2 (divp,Ty) — H H_ d1vr,Fk)

—a )

corresponding to the linear integral equation systems (4.13), (4.14), (4.18) and (4.22) are Fredholm operators
of index zero for all wave vectors « fulfilling acs > 0.

In order to give the proof of Theorem 5.1 a nice structure, we formulate two auxiliary lemmata in advance.

Lemma 5.2. The N X N sized linear operators

N-1 N-1 1
Mg, MM ] Ha d1vr,Fk — ] Ho?(divr,T})
k=0 k=0

from (4.13) and (4.14) are Fredholm operators of index zero if and only if their diagonal elements

o

MOdd) divp, Ty) — Ha 2 (divp, T
( o k+1k+1 (IVF, k) (IVF, k)

_; -3
(Meven)k+1,k+1 :Ho ? (divr, I'y) — He * (dive, I'y),

are Fredholm operators of index zero for all k € K.

Proof. We recall that all integral operators occurring in the elements of M " and Mgdd are linear and
bounded. For k # 7, the kernels of the operators

_1 -1
CRi, Ms™ - Hg ? (divy, T) — Ha ® (dive, T)

are smooth on I'y, x I';. Therefore, the operators C,?‘J?” and M,?J” k # j, are compact. From this, we easily
deduce the compactness of all off-diagonal elements (k # 7)

[0}

_1 -1 .
(Mgdd> Bl H, * (divr, I'j) — Heo * (divr, Ts),

_1 -3
(Meven)k+17j+1 . Ha 2 (diVF, F]) — Ha 2 (diVFa Fk))

i.e., MZV" and Mgdd are compact perturbations of the diagonal operators

diag ((Mg"™")1y 5 (M7 )gg -5 (M) ) »

« « o

diag(<Mgdd) ,(Mgdd) ,...,(Mgdd) )
11 22 NN

Thus, MS¥*" and Mgdd are Fredholm operators of index zero in the product space Hév:_ol H,'? (divp, ') if

and only if (Mg¥"); 1 41 @nd (]\4gdd)k+1,}wr1 are Fredholm operators of index zero in Hy'/*(divr, T'y).
O
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Lemma 5.3. Under the assumptions of Theorem 5.1, the operators

1 1

(Meven)k+1’k+1 cH,,? (diVF, Pk) — H;§ (diVF, Fk)7

[0

1 1
(Mgdd) - ML, 2 (divr, Ty) — H, 2 (divr, Ts)
k+1,k+1
are Fredholm of index zero.
Proof. For k € Ky, we define the operator A* : H,'/*(divy, I'y) — Ha"*(divr, T'y) by
AL = o O (Mg 1)+ (M +1) e

with pg41 = % This corresponds to the boundary integral operator A, for I' := I'y, from [6], which is
a Fredholm operator of index zero under the assumptions of [6, Corollary 5.2] if I" is smooth and under the
assumptions of [6, Corollary 5.7] if I is polyhedral Lipschitz regular. By Lemma 3.8, the adjoint operator of A’ia

witt respect to the bilinear forn Bk is
A ! A {oz k+1 a,(k a,(k+1 A [oc, k
( k*a> = Pk+1 ( kk7( ) I) Ckl;( : Ckk( : < kk( : I) '

This operator inherits the Fredholm properties of A’ia. Taking a closer look at the boundary integral operators
(ME*™) 11 k11 and (M2I4), 11 k11, we realize that

dd Kl; k’
(A[even)k Lt (Mo )k et — —kA for k S Keven @] {0}7
(Meven)k: Lhtl (_]\[0 )k . — ; (A :) fork S Kodd-

Since the assumptions of this theorem are in accordance with the assumptions of [6, Corollaries 5.2 and 5.7],
we apply them to conclude that (M5"") 41 k+1 and (Mgdd)k+17k+1 are Fredholm operators of index zero in
H.'*(divp, Ty) forall k € K. O

Proof of Theorem 5.1. The auxiliary Lemmata 5.2 and 5.3 immediately yield that M $*" and Mgdd are Fred-
holm operators of index zero in Hivz_ol H&W(din, I'x). Together with Lemma 4.3, we moreover infer that
Weven and W44 are Fredholm operators of index zero in [[n—g Ha'/*(divr, Ty). O

5.2 Uniqueness

This subsection is concerned with the uniqueness of solutions to the systems of linear integral equations (4.13)
and (4.14). Our main result reads as follows.

Theorem 5.4 (Uniqueness). Let the electromagnetic material parameters €, (i, k € Kév , of the considered
27 -biperiodic N -layered structure satisfy (2.2) such that €g, 119 ¢ R_ and ey, un ¢ R_. Moreover, assume
that one of the following situations holds for €;, €11, jtj and 141 for some j € Ko:

(i) €;,1; € R such that at least one of them is positive and

Im(ej411) >0 and Im(pjy1) >0 with Im(€j41 + pjr1) > 0;

i) €;+1,ui+1 € R such that at least one of them is positive and
G+ Hj+

Im(e;) >0 and Im(p;) >0 with Im(ej + p5) > 0;
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(iii) Tm (€;) ,Im (€j41) , Im (p5) , Im (pj41) > 0 with

Im (e +p5) >0 and Im (€41 + pj41) > 0.

Then, depending on the parity of N, the linear integral equation systems (4.13) or (4.14) have at most one
solution J € T[n_y Ha'/*(divy, T'y) if

N <C’,?’_(f)k_1> =N (C?,;(k)) ={0} fork € Koaa

and additiona//y/\/ C a’EN) _.) = {0} in case of an odd number of interfaces IN .
N-1,N-1

The proof of Theorem 5.4 requires several auxiliary lemmata, which are presented hereafter.

Lemma 5.5. Let the electric permittivities €;, and the magnetic permeabilities iy, k € K, (])V , satisfy (2.2). Then,
if i, € R for some k € K(¥, we have

Im ( ,(gn)) > 0 for all except of a finite number N ofn € 72

The excluded n € N} satisfy Im(,B,(Cn)) = 0. For all other values of ky, the imaginary part of 51(:) is non-
negative for alln € 72, ie., Im(ﬁ,(cn)) > 0 foralln € Z2.

Lemma 5.6. Let the electromagnetic material parameters €;, and iy, k € K, év , satisfy (2.2). Then we have

Tm <E’;> <0 foralk e KY. (5.1)
K

Both Lemma 5.5 and Lemma 5.6 are shown by simple computations.

The next auxiliary result is a particular type of Holmgren’s uniqueness theorem (HUT) for the time-harmonic
Maxwell equations. The original version of Holmgren’s theorem is found in [14].

Theorem 5.7 (HUT for time-harmonic Maxwell's equations). Let G be a connected and bounded polyhedral
Lipschitz domain and assume that E € H (curl, G) is a solution of the time-harmonic Maxwell equations
curlcurl E — x%2E = 0in G. If there exists an open set U such that U N 0G # 0 and

wE=mwW.,E=0 onUNOoG (5.2)

holds, then E already vanishes in all of 5.

Theorem 5.7 can be verified by adapting the proof of Theorem 3.5 in [13], which presents the corresponding
result for acoustics, to electromagnetics (see also [10, Theorem 6.5]).

Proof of Theorem 5.4. For the verification of Theorem 5.4, we reuse the ideas of the proof of Theorem 5.9 from
[6] and make a proof by contradiction. Depending on the parity of IV, let

N-1 4
Je ] Ha?(divp, Tk)
k=0

be a nontrivial solution of M5"°" = 0 or Mgdd = (. With the help of Lemma 4.4, it is then possible to compose
an «a-quasiperiodic electric field E in Gi, k € Kév, from J, which solves the homogeneous 27-biperiodic
multilayered electromagnetic scattering problem with respect to the transmission conditions

10xEk =70 kBt and 105 (curl By) = gy (curl Egyg) (5.3)
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for k € Kj. Next, we want to derive a variational formulation in terms of E in the domain GH introduced in
(2.3) for a fixed H € R_.. Speaking visually, G is a periodically extendable cell of width 27 in both z;- and
x9-direction that contains all considered grating interfaces I'y,, k£ € K, of the considered multilayered structure
and is bounded by the plane surfaces

M ={rec@QxR : 23 =+H}

with the outer normals ni! = (0,0, :I:l)T. Furthermore, we recall the definition of the bounded domains
G = G N Gy and G, = G N G . Our first step now consists in multiplying the time-harmonic Maxwell
equations (2. 7) by €2E Afterwards, we integrate the resulting expression over the polyhedral Lipschitz domain
Q= GH Uk 11 G U GH and apply Green’s identity (3.6) for the curl operator in the polyhedral Lipschitz
domains GO ,GN and Gy, k: € K, in terms of their outer unit normals:

0 = / (curl curl E — f<;2E) . %E dx
0 K

(3.6) /GH % lcurl E|* — ¢ |E|? dx + By <’yD (curlE), 27DE>
N-1 .
+ Z Baa, <7D (curlE), H’;WDE> + BBG% (7]3 (curlE), o VDE)
k=1 k

The a-quasiperiodicity of the integrands implies that
e — (’YD (curl E), Q’YDE)
+ Bizeoct : 2=} <7D (curlE), nyDE> 0,
Biicoch : wy=—n} ((Curl E), :é’YDE>
+ Biacoct : wo—r} (*yD (curlE), Z%’YDE) =0
for x € {0, N} and
Bizeoc, : e1=—n} <7D (curlE), QWDE>
+ Biecagy, : z1=r} (’VD (curlE), p ’VDE> 0,
Biecoc, : wo——n} <’YD (curlE), QVDE>
+ Bireogy, : wo=n} <7D (curlE), :}%'YDE> =0
for k € K. Our equation so far can thus be reformulated to

€ 2 2 €0 —
0 = /G’H ) |curl E|” — € |E|” dx + Bycn <'yD (curlE), H(Q)'yDE>

To
N—-1

€ —
+ Z Baa,, (’YD (curlE), F;;'yDE>

k=1 k

€ —
+ Bag, <7D (curlE), F;;VDE)
k

Tr—1 iy

+ Byan (’yD (curlE), 27DE>
R

n—1
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€ — € __
_ / €0 <7D]FH (curlEo)) lpu Eg do — / —]2\[7' <’}/D|1—\H (curlEN)) e En do
FH K/O + FH K/N - -

(5é)1/ = lcurl B — ¢|E|? dx
GH

N—

Z

/ % [(curlEq); (Ey), — (curlEo), (Eo),] do

Ko

€k — €L —
( +1 Yo (curlEg.q), ’yf)r’kEk) — B (RQVSk (curl Eg) ,yakEk)
k+1 k

/ ;% [(CUI‘I EN)Q (EN)1 — (curl EN)l (EN)Q] do

CD2 [ |curl B” - ¢|B[® du
GH K
N-1 a1 .
k+1€k+1 k =
+ > By ( ( u:ﬁ +1 ¥ )»ka(curlEk) yg,kEk>
=0 k+1 k
=0

+/ 6% [(curl Eg), (EO)z — (curl Ey), (Eo)l] do
rit Ko
EN

4 / N [(curl By), (Ex), — (curl Ex), (Ex),] do.
i Ry

In the above calculation, the expressions r(’m|r§ -) on the plane surfaces FE are computed via the classical

cross product as (7D|F§ . xnli). The electric fields Eg and E v solve the electromagnetic scattering problem
in the semi-infinite domains GGy and G and thus in particular fulfill the outgoing wave condition (2.12)-(2.13).
Combined with div EE = 0, this yields the identities

agn) (E?L) ) + ozgn) (E2>2 + @ (Eﬁ)g =0 on FE, (5.4)
o™ (Eff)l + " (EQ)Q Q) (Eﬁf)g =0 onTH (5.5)

for the complex-valued Rayleigh coefficients EQ and EY, n € Z2, on FE and I'Y| respectively. Together with
the outgoing wave condition (2.12)-(2.13) these relations give rise to

iy (n)
/ 6% [(curl Eg), (Eo), — (curl Eg), (Eo) ] Z MoOE? . E 0 o—2Im (85" )H
FH " n€z?
and
E : = @)
4 55 [feurlEx), (B), — (curl B, (Bx),] do = = 3 agVE)Y B e 201
e neZ?
with
i47r2€ 5(()n) O O i471'2€ 51(\7) 0
Mgz,o — - 0 0 B[()n) 0 7 Mﬁz,N — - N 0 5](\7;)
0 () N
0 0 By 0 0

Inserting this into the variational equation for EE from above yields
€
/ — lcurl E* — ¢ |E|? dx
GH R

_ Z <Ma ORQ . EO —2Im( " )_i_MT?,NEQI 'Eive—2lm(51(\7))>.

nez?

(5.6)
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We now take the imaginary part of (5.6) and let H — oco: Exploiting that, by Lemma 5.5, we have Im(ﬁ(()n)) >0
and Im(ﬁj(\?)) > 0 for all n € Z? with Im (6(()”)) =(0andIm (B](\?)> = 0 only for a finite number of n € Z?2
if n% € R and /ﬁ%\, € R, we then obtain that

lim Im ( ) lcurl Eg|? — Im (eo) |Eo|? da:
GE Ho

H—oo

+Z/ < >|curlEk| —Im (e) |Ex|? da (5.7)

+ lim Im(e )|curlEN] —Im (ey) [Ex|* da
GY ’QN

H—oo
— 472 | Tm <i:;> Zﬁén) |E2}2 +Im <1:2V> 251(\7) |E71:f|2
07 B N/ By

with By = {n €7? : ﬁ(()n) > O} and By = {n €72 : 61(\7) > O} as ko, kN ¢ R_. This means
that in particular the limit expression on the left-hand side exists. The assumptions of this theorem on the
electromagnetic material parameters make an application of Lemma 5.6 possible. In fact, with Im(ek/mz) <0,
given by (5.1), and — Im(e;,) < Oforall k € K}, we arrive at

lim Im< ) lcurl Eo|? — Im (eq) |Eo|? dx
G ’fo

H—oo

+Z/ ( )\curlEk\ — Im () |Ex|* da (5.8)

+ lim Im (6 > lcurl Ex|? — Im (ey) [En|? dz < 0.
GY '“JN

H—o0

Next, we take a look at the right-hand side of equation (5.7). Lemma 5.5 implies that 6[()”) € R\ {0} and
](\7) € R\ {0} ifand only if k9 € R and ky € IR. Since, by assumption, we excluded the case that
€0, o € R_ and ey, uy € R_, the latter requirement is only satisfied if €g, 1o € Ry and ey, uy € R

Then the right-hand side of equation (5.7) is non-negative and we altogether obtain

(5.8)
0 > lim Im( >|curlE0| —Im (&) [Eo|? dz
Gl "‘fo

H—oo

—i—Z/ ( >|curlEk| —Tm (eg) |Eg|? da (5.9)

+ lim Im(6 )\curlEN| —Im (en) |En|* dz
G KVN

H—oco
= 47% |Im <1:;) Zﬁon) ‘E?L‘Q +Im (1:2\[) Zﬁl(\rfl) ‘EnN‘Q > 0.
0 Bo N By

In fact, this in particular gives

lim Im (2> lcurl Eg|? — Im (o) |Eo|? dz = 0, (5.10)
H—oco GH FDO
lim <2> lcurl Ex|? — Im (en) |[En|? daz = 0, (5.11)
H—o0 Ky
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/ Im <Eg> [curl By[* —Tm (e) [Ex|* dz =0 fork € K. (5.12)
Gk K

Denote by j the index in K& for which the selected electromagnetic material parameters €, €41, (; and (141
satisfy the assumptions of one of the cases (i)-(iii). If 7 = 0 or j = N, we deduce from (5.10) and (5.11) that
E; =0ae.inGj. If j € K, we immediately observe that either

E; =0 or curlE; =0 in cases (ii), (iii) (5.13)
or
E;jy1 =0 or curlE;;; =0 in cases (i), (iii) (5.14)

can be inferred from (5.12) for k = jand k = j+ 1. If curl E; = 0 holds in (5.13), the time-harmonic Maxwell
equations curlcurl E; — KV?E]‘ = 0 imply that then also E; = 0. In (5.14), we similarly conclude that also
E; 1 = Oistrueif curl E;; = 0. Furthermore, if one of the identities in (5.14) is satisfied, we have

(5.3)

_ (5.3)
= ’YSJEJ‘H:O and 'YNj,jEj

— 2 + _
VD,J'EJ‘ - 7Nj+1,jEj+1 =0

and an application of Holmgren’s uniqueness theorem in the version of Theorem 5.7 to the bounded domain G ;
implies that E; = 0 in G;. Thus, all in all, we conclude that

E; =0 ae.in Gj in situations (i)-(iii) (5.15)
for the characteristic index j € K{.
Forj € Kév, the conclusion (5.15) in particular gives rise to
iy = AT — AT — AT R ; .
’YD,jflEJ = nyKj ’jilEj = VD,]’EJ = 'yNKj JE] =0 ae.inGj

for the characteristic index 7 € K(I)V in all situations (i)-(iii). With the transmission conditions (5.3), we derive
that

W B =, B =0 forall j € K™ and (5.16)
’YIS,jEj-H = 7§Nj+1,jEj+1 =0 forall j € K. (5.17)

We recapitulate that the electric fields Ej_]_ and Ej_l,_]_ are solutions of the time-harmonic Maxwell equations
curlcurlE — 3 |E = 0 and curlcurl E — 7, | E = 0, respectively, in addition to (5.16) and (5.17),
respectively. Thus, we are able to apply Holmgren’s uniqueness theorem (see Theorem 5.7) if j — 1 # 0 and
Jj+1# N.ThisresultsinE;_1 =0inGj_jaswellasE; 1 =0inGj11.fj—1=0o0rj+1=N,the
Stratton-Chu integral representation from Lemma 3.12 also shows that

1 (5.17) .
EO = 5 (\I]%N0707§KO70E0 + \Ilﬁ/[novor)/g,OEO) =0 in GO or
1 = — (5.17) )
Ey = —3 (‘II%NN,N—I’YNKN’N_lEN + ‘IJI%AKN,N—17D,N_1EN> =0 inGn.

This type of argumentation can easily be applied iteratively. We altogether obtain that
_ ; N
E;,=0 inGpfork e Kj .

Due to the considered potential ansatz, this means that for k € K,qq

Lemma 3.15

Ep = Vg, k-1dk-1+ Vg, kik =0 Vg, k—1dk—1= VY, pjr =0 (5.18)
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and moreover

\IJ%HMN,le,l =0 (5.19)
if IV is odd. At this point, we recall the assumption that
J(k J(k
and additionally N (C'y ?N 1) = {0} in case of an odd number of interfaces N. All involved boundary
integral operators

l\]\)—l

1
C,?’_(ﬁ)k_l o 2 (divp, T_1) = Ho 2 (dive, Ti—1),

I\J\H

_1
Ca’(k) H, (leF, Fk) — H,? (din, Fk)
for k € K,qq as well as additionally C'y’ o( I)N L Ho*(divy,Ty_1) if NV is odd are all Fredholm operators
of index zero by Lemma 3.9 and are therefore already invertible. Then
(k). (3.11) . (5.18) .
?fl,)k,leA = 7$7k,1‘11%wk_1.1k_1 =0 = jrp1=0,
(3.11) 5.18

k . (5.18) .
Ck,ﬁ )3 Je = 7D7k‘I’CEYK,k,ka =0 = =0
for k € K,qq and in addition

(3.11) (5.19) ;
~Cy (I)N JN-1 = VDN 1 VE, N1JN1 =0 = jn-1=0
if the number of interfaces N is odd. In summary, we derived that J = 0 in all of the situations (i)-(iii), which
contradicts the assumed nontriviality of J. Thus, under the assumptions of this theorem, solutions J lying in
1o, Ha'/*(divr, T'y) to the linear integral equation systems (4.13) for even N and (4.14) for odd N are
unique. O

5.3 Existence

Finally, the existence of solutions to the linear integral equation systems (4.13) and (4.14) is studied. We assume
that the requirements of Theorem 5.1 are satisfied, which entails that MV and M99 are Fredholm operators
of index zero in the product space Hg:_ol H&m (divr, I'x). Then we separately consider their left-hand sides
MEY*™ and M99 to either have a trivial nullspace, i.e., to be invertible, or to have a nontrivial nullspace. In the
latter case,

N-1 N-—1
R (MEVen) £ H H,? (divp,T)) and R<M°dd> # [[ Ha 2 (divp, T)
k=0

holds and the existence of (p033|bly nonunique) solutions to (4.13) and (4.14) is no longer guaranteed.

Theorem 5.8 (Solvability of MSV°™ and M299). Let the assumptions of Theorem 5.4 hold. Moreover, assume
that the electromagnetic material parameters €, and iy, k € K(])V , satisfy (2.2) such that

€xr1 # —€, and ppi1 # —pup fork € Ko
ifI'y, is smooth, or

Re(ey) Re(e41) + Im(er) Im(egsr) > 0 and - Re(jug) Re(psr) + Im(pu) Im(pgs1) > 0

ifI'y, is only polyhedral Lipschitz regular. Then there exists a density J € H,]j:_ol H_,'*(divy, ') that uniquely
solves either the system (4.13) if N is even or the system (4.14) if N is odd, i.e., either

M =f, foreven N or M2J =f£, forodd N,
where £, is given by (4.19)-(4.21).
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Since, under the assumptions of Theorem 5.8, MSV*" and MS4¢ are both Fredholm operators of index zero
in Hfj;()l H_'/*(divp,T}) and a uniqueness result in form of Theorem 5.4 holds, the operators MS'** and
Mgdd are already invertible. This easily proves Theorem 5.8.

Finally, we investigate the existence of solutions to (4.13) and (4.14) for material parameter choices such that
Theorem 5.4 can not be applied, i.e., in situations in which MSV*" and MS4¢ are no longer invertible in
Hévz_ol H;l/z(divF, I'k). Indeed, we consider electromagnetic material parameters €, g, k € Kév, sat-
isfying (2.2) such that e, . € R. Unfortunately, we fail to verify a general existence result in the mentioned
situations. However, the next theorem still provides rather general conditions on the electromagnetic material
parameters that ensure the existence of solutions to the systems (4.13) and (4.14) for real-valued ¢, and p,
ke KY.

Theorem 5.9 (Existence of solutions to (4.13) and (4.14)). Let the electromagnetic material parameters €y,
px € R,k € K, satisfy (2.2) such that sgn (egpio) > 0 andsgn(popn) > 0 ifsgn(enpn) > 0. Moreover,
assume, for k € Ky, that

€yl # —€x and ppi1 F —pk

ifI'y. is smooth, or
Re(er) Re(€eg+1) + Im(ex) Im(epr1) > 0 and  Re(ur) Re(prr1) + Im(pg) Im(pg41) > 0

if 'y, is only polyhedral Lipschitz regular. Then, if
N <Cl?7—(f,)k—1> = ./\/ (C]?];(k)) = {0} fork € Kodd

and additionally N (C]%’EJY)NA) = {0} if N is odd, there exists at least one solution J, lying in the product

space Hff:_ol H,'? (divp, T'x), of either the integral equation system (4.13) in the case that N is even or the
integral equation system (4.14) in the case that N is odd.

The proof strategy for Theorem 5.9 is to extend the proof of Theorem 5.13 from [6] from single to multi-profile
scattering. We recall the adjoint relation of the systems (4.13) and (4.18) as well as of the systems (4.14) and
(4.22) with respect to the bilinear form [-, -] from (4.23) in the sense of Lemma 4.3, i.e.,

(M3 L] = [J,WeL]  and [Mgde,L} - [J,WfidL]

forall J € TTa ) Ha'/?(divp, Ty) and L € T[o-, H_/*(divr, I'y). The vector f consisting of N compo-
nents - each corresponding to a two-dimensional tangent vector - is defined by

2K . T
f = (—OV]SOEI,O,...,O> .
o

It describes both the right-hand sides of (4.13) and (4.14). We are then able to reduce the proof of Theorem 5.9
to showing that either
N-1 L
[f,L] =0 foralL e J] H_2(div, I)) with WL = 0 (5.20)
k=0
if the number of interfaces IV in the considered 27-biperiodic multilayered structure is even, or
N-1 L
[f,L] =0 foralL e J] H_2(divp, %) with WL = 0 (5.21)
k=0
if IV is odd. This essentially goes back to the fact that, under the assumptions of Theorem 5.9, the N x N

integral operators M<'°" and M244 are Fredholm operators of index zero by Theorem 5.1. In fact, then the
ranges of ME¥™ and M2 are closed.
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Proof of Theorem 5.9. Let L := (ly,...,1x_1)" be an arbitrary density lying in HkN:_Ol H~!/*(divy, Ty)
such that either L € N (W) if the number of grating surfaces N is even or L € N(W°dd) if N is
odd. Then Lemma 4.6 provides us with a (—a)-quasiperiodic solution E = E; in G, k € Kév, of the
homogeneous version of the 27-biperiodic electromagnetic scattering problem (2.7)-(2.13) since

N (C’,?’_(i)k_l) =N (C,?,;(k)> = {0} fork € Koqq

and additionally A/(C% N 1)N 1) = {0} if NV is odd holds. Such a solution in particular satisfies a variational

equation similar to (5.7) in terms of the complex-valued Rayleigh coefficients E?L and Eﬁ/ - defined in Q x R
above FE and below I'H| respectively - after replacing the wave vector a: by (—a):

lim 1m<6 >curlE0| — Im (o) [Eo|? da
GH K/O

H—o0

—i—Z/ < >]curlEk] —Im (¢,) |Ex|* da

+ lim 1m<6 )|cur1ENy — Im (ey) [En|? dz
GY ’{N

H—oo
— 472 | Im <1;g> Zﬁén) }E%‘Q +Im <1:2V> Zﬁ](\?) }E2f|2
0/ By N/ By

where By := {n €7? : ,Bén) eR\ {O}} and By = {n €72 : ,8](\7,1) eR\ {O}} Since all considered
electromagnetic material parameters are real-valued, we remain with

th?)}j%mEﬁf+m%ﬁg>§:@?@ﬁf—o. (5.22)
0 Bo N By

The specific assumptions on €, j1, € and py, i.e., sgn(egpo) > 0and sgn(poun) > Oifsgn(enpun) > 0,

guarantee that
. €0 .EN 1
sgn | Im (i— | Im | i—- =sgn|———]>0
K KN WrHo N

if sgn(enpn) > 0. In the remaining case that sgn (e ) < 0, the electric permittivity €y and the magnetic

permeability iy are of different sign. Therefore, Re(x%;) = 0 and thus Re(ﬁj(\?)) = 0, from which we infer
that the second term on the right-hand side of (5.22) is equal to zero. All in all, we can then conclude that

E) =0 inQ x Rabove I'! for those n € Z* such that B[()n) e R\ {0}.

From the properties of the wave vector (—«) of the incident plane wave E! occurring in the linear integral
equation systems (4.13) and (4.14), it is clear that

(0) =/rE—|-aO|" = /K2 — |-@| 2= 3> 0.

EY =0 inQ x R above FE. (5.23)

This insight leads to

The Rayleigh coefficient E8 can be computed explicitely by using the potential ansatz Eg = \I/Es‘o olo in Go.
Executing this, leads together with the identity (5.23) - in the same manner as in the proof of Theorem 5.13 from
[6] - to the conclusion that

g=0 o gfa (5.24)
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for all vector-valued densities L € [[p— H_Y/*(divr,T}) such that either L € A/ (WeV) if N is even or
L € N(W°d) it N is odd, where

gj = / (ir0lo) @I=asm) go(y) forj € {1,2,3}.
To

Recalling that

2K ; T
f= <_07D0E1,0,...,0)
Mo

is the left-hand side of each of the integral equation systems (4.13) and (4.14) and ng denotes the upwards
pointing normal on I', we obtain by simple manipulations that

N-1
20 _ 2K i .
[£.L] = > Bi (fes1, 1) = By <—O’YD,0E ,10> = 0/ E'(y) - (ix,0l0)(y) do(y).
k=0 HO Ho Ty

Inserting the respresentation of the incident plane wave E! as E! = pel(®9-2343) in the equation above and
exploiting that the property « || g from (5.24) is equivalent to

2.6
p-g=0 duetoa-p(: 0,

we finally conclude that

2Ko (5.24)
Ho

_1
0 forallL € H_Z(divp, ') with WEF'L = 0

if the number of grating interfaces NV is even, and

2 . _1
If,L] = %p g "2Y0 foral L € H 2 (divr, I.) with WL = 0

if IV is odd. This proves our claim. O

6 Conclusion

In this article, we presented an integral equation method for the treatment of electromagnetic scattering by
27-biperiodic multilayered structures composed of N > 2 vertically stacked non-self-intersecting grating in-
terfaces of polyhedral Lipschitz regularity. It led to a parity-dependent system of integral equations equivalent
to the 27-biperiodic /N -layered electromagnetic scattering problem. In order to achieve this, we applied a par-
ticular combined potential ansatz, which is the natural extension of the combined potential ansatz used in [6]
for the corresponding problem of single profile scattering: Above the structure, we assumed an «-quasiperiodic
Stratton-Chu integral representation and then alternated a two-term electric potential ansatz with two unknown
densities with an «-quasiperiodic Stratton-Chu type integral representation. Below the scatterer we either as-
sumed a Stratton-Chu integral representation or a simple electric potential ansatz. Due to this approach, we
encounter boundary integral equations that are structurally similar to the ones occurring in the study of single
profile scattering as in [6]. With the help of the same techniques as those employed in the presence of only
one grating interface, we were therefore able to prove analogous results on the Fredholmness of the system of
integral equations as well as on existence and uniqueness of its solution.

It is clear that the numerical solution of a system of N integral equations is computationally very expensive
to obtain, in particular for a large IN. Therefore, we are interested in the development of a more sophisticated
method. That this is possible is shown in the consecutive article [7], in which we introduce a recursive integral
equation algorithm. In the course of its study, we exploit the analytical findings of the present paper.
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