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Abstract

The objective of this paper is the analytical investigation of an integral equation formulation for elec-
tromagnetic scattering by 2π-biperiodic multilayered structures with polyhedral Lipschitz regular interfaces.
Extending the combined potential ansatz from [6] for the electric fields in the before mentioned electro-
magnetic scattering problem from single to N profile scattering yields an equivalent system of N integral
equations. We present a uniqueness and two existence results for this system depending on the values of
the electromagnetic material parameters of the considered biperiodic scatterer. This in particular includes
the proof that the system of integral equations is of zero Fredholm index. The general case that the grating
interfaces are of polyhedral Lipschitz regularity requires more strict assumptions than the special case of
smooth grating interfaces. We exploit the solvability results of this work in a subsequent paper featuring a
recursive integral equation algorithm for the 2π-biperiodic multilayered electromagnetic scattering problem.

1 Introduction

In the following, we derive a boundary integral equation method for the treatment of 2π-biperiodic multilay-
ered electromagnetic scattering, which arises from the illumination of a 2π-biperiodic multilayered structure by
an electromagnetic plane wave. We model such structures by a finite number of vertically stacked non-self-
intersecting grating interfaces of at least polyhedral Lipschitz regularity. The incident, reflected and transmitted
waves can be described by the system of time-harmonic Maxwell equations together with transmission condi-
tions across the grating interfaces of the considered multilayered scatterer and suitable outgoing wave condi-
tions. The motivation behind our investigation is that such problems, i.e., particular diffraction problems, offer a
variety of considerable and interesting application areas, in particular in micro-optics. Moreover, some results of
this article are relevant for the outcome of the consecutive article [7].

In general, periodic structures can be understood in terms of several different geometry settings such as periodic
arrays of bounded obstacles, periodically aligned cylinders of infinite extent or surfaces exhibiting a certain
periodicity as considered in this paper. There are two main mathematically rigorous methods to treat scattering
problems involving periodic structures: integral equation methods and variational approaches. Here, we apply
integral equation methods, which lay the foundation for implementations based on boundary element methods.
In the periodic framework, the basic idea behind these methods is to assume potential ansatzes in form of
integral operators with problem-specific quasiperiodic kernels for the incident and scattered waves occurring
in the periodic scattering problems. A clever application of trace operators then makes it possible to obtain
boundary integral equations on the boundaries of the considered obstacles. Such techniques were already
successfully applied for instance in the articles [9], [12], [17] and [19].

Our precise approach consists in extending the potential ansatz applied in [6] for scattering by a single 2π-
biperiodic interface to the multilayered framework. This is done by alternating an α-quasiperiodic Stratton-Chu
type integral representation with electric potential ansatzes. For a structure consisting of N interfaces, this
approach leads to a system of N singular integral equations that are computationally very expensive to solve,
especially for large N . Hence, our focus lies on the analytical investigation of the mentioned system. We depict
uniqueness and existence of solutions to the derived integral equation system by applying the results and ideas
from [6] for single profile scattering. The solvability of the integral equation system contributes to the proof of an
existence result for the recursive integral equation algorithm derived in [7].

The content of this work is also presented in a more extensive form in Section 6.3.1 of the PhD thesis [8] with
the title “On Integral Equation Methods for Electromagnetic Scattering by Biperiodic Structures”.
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The subsequent section states the 2π-biperiodic N -layered electromagnetic scattering problem for structures
composed of N ≥ 2 non-self-intersecting 2π-biperiodic grating interfaces of polyhedral Lipschitz regularity.
Section 3 then provides us with the relevant functional analytic framework necessary to pursue integral equation
techniques in the 2π-biperiodic setting, in Section 4. Based on the previously described combined potential
ansatz, we derive a system of singular boundary integral equations as well as its adjoint in a certain sense, which
are both equivalent to the 2π-biperiodic multilayered electromagnetic scattering problem. This equivalence shall
be understood in the sense that any solution of one problem yields a solution of the other and vice versa. The
structures of the system and its adjoint are parity dependent. Next, we investigate the solvability of the integral
equation system in Section 5. For this, we first determine the Fredholm properties of the integral equation system
with the result that it is Fredholm of index zero under certain assumptions on the electromagnetic material
parameters. With this result, we can then prove the existence of solutions to the considered integral equation
system by extending the techniques in [6] from single to multi-profile scattering. In a similar way, we adapt the
ideas in [6] to deduce the uniqueness of solutions to the integral equation system via a variational argumentation.
In the final Section 6, we briefly recapitulate the main findings of this article. Moreover, we propose how to
continue our work on the treatment of the 2π-biperiodic multilayered electromagnetic scattering problem by
integral equation methods.

Notation. For vectors x ∈ R3, we denote by x̃ their orthogonal projection to the (x1, x2)–plane. We distinguish
vector-valued function spaces from scalar-valued ones by writing them in bold font.

2 The multilayered electromagnetic scattering problem

In this section, we want to formulate the 2π-biperiodic multilayered electromagnetic scattering problem treated
in this article. For notational reasons, we introduce the index sets

K := {1, . . . , N − 1} , K0 := K ∪ {0}, KN := K ∪ {N} and KN
0 := KN ∪ {0}.

We consider a 2π-biperiodic multilayered structure consisting of N ≥ 2 non-self-intersecting vertically stacked
interfaces Σk ⊂ R2, k ∈ K0, that can be described by piecewise C2 parametrizations

σk(t) :=
(
t1, t2, x

(k)
3 (t)

)T
such that x

(k)
3 (t+ 2πm) = x

(k)
3 (t) (2.1)

for t = (t1, t2)T, m ∈ Z2, k ∈ K0. Speaking visually, each Σk is 2π-periodic in both x1- and x2-direction
and may exhibit edges and corners. From here on, we refer to this kind of regularity as polyhedral Lipschitz
regularity. Moreover, the surfaces Σk are numbered in descending order from top to bottom, i.e., the top surface
is Σ0 and the bottom one ΣN . All considerations in this paper focus only on one period of the multilayered
scatterer as it is commonly seen in the treatment of periodic problems. This means that we restrict each surface
Σk, k ∈ K0, to one period Γk:

Γk := {σk(t) : t ∈ Q} , where Q := [−π, π)× [−π, π)

corresponds to the unit-cell of the periodic lattice. The restricted profiles Γk, k ∈ K0, separate N + 1 ho-
mogeneous material layers Gk ⊂ R3, k ∈ KN

0 , of constant electric permittivity εk and constant magnetic
permeability µk. The top domainG0 and the bottom domainGN are both semi-infinite, whereas all regionsGk,
k ∈ K , in between are bounded polyhedral Lipschitz domains. We specify the unit normal vectors nk := n|Γk ,
k ∈ K0, of Γk in such a way that they point upwards, i.e., into Gk. The electromagnetic material parameters
εk and µk, k ∈ KN

0 , are assumed to be 2π-biperiodic in x1- and in x2- direction in Gk and to satisfy

Im (εk) ≥ 0 and Im (µk) ≥ 0 in Gk, k ∈ KN
0 . (2.2)

We exclude the case that εk = 0 and / or µk = 0. This ensures that κk 6= 0. Moreover, we define the piecewise
constant wavenumbers

κk := ω
√
εk
√
µk in Gk, k ∈ KN

0 ,
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where ω > 0 is a fixed frequency. The square root of a complex number z = reiϕ is chosen such that√
z =
√
reiϕ

2 for 0 ≤ ϕ < 2π.

In the course of this paper, we will use the auxiliary polyhedral Lipschitz regular domain GH depending on a
fixed H ∈ R+, which is chosen such that

Γk ⊂ GH :=
{
x = (x̃, x3)T ∈ Q× R : |x3| ≤ H

}
for all k ∈ K0. (2.3)

Denote by GH
0 and GH

N the restrictions of the semi-infinite domains G0 and GN to GH, i.e.,

GH
0 := GH ∩G0 and GH

N := GH ∩GN .

Moreover, we will work with the semi-infinite domains

G+
k := {x ∈ Q× R : x3 > σk(x̃)} and G−k := {x ∈ Q× R : x3 < σk(x̃)}, k ∈ K0. (2.4)

The interface Γ0 is now illuminated from G0 by a time-harmonic electric plane wave Ei at oblique incidence
specified by

Ei := pei(α1x1+α2x2−α3x3) with α3 > 0. (2.5)

It in particular fulfills the relation

u (x̃+ 2πm, x3) = ei2π(α1m1+α2m2)u(x) for all m ∈ Z2.

This special type of periodicity up to a phase shift will be called α-quasiperiodicity (abbreviated as α-qp). The
wave vector α = (α1, α2,−α3)T of the incident field exhibits the following properties:

|α|2 = |κ0|2 and α · p = 0. (2.6)

The total electric fields are given by Ei + E0 in G0 and by Ek in Gk, k ∈ KN . Then the 2π-biperiodic
electromagnetic scattering problem written in terms of the electric field is expressed as follows: We look for
vector fields Ek, k ∈ KN

0 , of locally finite energy, in the sense that

Ek, curlEk ∈ L2
loc(R3),

solving the time-harmonic Maxwell equations

curl curlEk − κ2
kEk = 0 in Gk (2.7)

with respect to the transmission conditions

γ−D,0E1 = γ+
D,0E0 + γ+

D,0E
i on Γ0, (2.8)

γ−Nκ1 ,0
E1 = ρ−1

1

(
γ+

Nκ0 ,0
E0 + γ+

Nκ0 ,0
Ei
)

on Γ0, (2.9)

γ−D,kEk+1 = γ+
D,kEk on Γk for k ∈ K, (2.10)

γ−Nκk+1
,kEk+1 = ρ−1

k+1γ
+
Nκk ,k

Ek on Γk for k ∈ K (2.11)

and the outgoing wave condition in the sense of Rayleigh series:

E0(x) =
∑
n∈Z2

E0
ne

i(α(n)·x̃+β
(n)
0 x3 ), x ∈ G0 with x3 ≥ H, (2.12)

EN (x) =
∑
n∈Z2

ENn e
i(α(n)·x̃−β(n)

N x3 ), x ∈ GN with x3 ≤ −H. (2.13)

Here, n = (n1, n2)T, α(n) := (α1 + n1, α2 + n2)T and

β
(n)
k :=



√
κ2
k − |α(n)|2 with 0 ≤ arg

(
β

(n)
k

)
< π if κk /∈ R−,

−
√
κ2
k − |α(n)|2 if κk ∈ R− and κ2

k − |α(n)|2 > 0,

i
√
κ2
k − |α(n)|2 if κk ∈ R− and κ2

k − |α(n)|2 < 0.

Since the electric incident waves are α-quasiperiodic, the sought-after fields are also α-quasiperiodic.
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3 Function spaces, traces and electromagnetic potentials

Let Ω be a polyhedral Lipschitz domain in R3. If Ω is bounded, we denote by Hs(Ω) the usual scalar-valued
Sobolev space of order s ∈ R with the common convention L2(Ω) := H0(Ω). Otherwise, Hs

loc(Ω) refers to
the space of functions contained in Hs(K) for all K b Ω. Their vector-valued counterparts are specified by
Hs(Ω) and Hs

loc(Ω). Let D be a differential operator. Then

H (D,Ω) :=
{
u ∈ L2(Ω) : Du ∈ L2(Ω) (or Du ∈ L2(Ω)

}
,

Hloc (D,Ω) :=
{
u ∈ L2

loc(Ω) : Du ∈ L2
loc(Ω) (or Du ∈ L2

loc(Ω)
}
.

Both spaces are endowed with their natural graph norm. We consider the following α-quasiperiodic Sobolev
spaces for s ∈ R:

Hs
α(Gk) :=

{
u ∈ Hs(Gk) : ∃ α-qp v ∈ Hs

loc(R3) such that u = v|Gk
}
, k ∈ K,

Hs
α(D, Gk) :=

{
u ∈ Hs(D, Gk) : ∃ α-qp v ∈ Hs

loc(D,R3) such that u = v|Gk
}
, k ∈ K,

Hs
α,loc(Gk) :=

{
u ∈ Hs

loc(Gk) : ∃ α-qp v ∈ Hs
loc(R3) such that u = v|Gk

}
, k ∈ {0, N},

Hs
α,loc(D, Gk) :=

{
u ∈ Hs

loc(D, Gk) : ∃ α-qp v ∈ Hs
loc(D,R3) s. t. u = v|Gk

}
, k ∈ {0, N}.

Moreover, we define the space

Hs
α :=

u =
∑
n∈Z2

une
iα(n)·x̃ : ‖u‖2α,s =

∑
n∈Z2

(
1 +

∣∣∣α(n)
∣∣∣2)s |un|2 <∞


for s ≥ 0. Completing L2

α(Q) with respect to the norm ‖u‖α,−s := sup
06=v∈Hs

α

(|(u,v)L2
α(Q)|/‖v‖α,s) provides

the dual space H−sα , s > 0, of Hs
α. Moreover, we have

Hs
α(Γk) := {u : u ◦ σk ∈ Hs

α} for s ∈ [0, 1], k ∈ K0.

The dual space of Hs
α(Γk), k ∈ K0, denoted by H−sα (Γk) for s ∈ (0, 1], arises from the completion of L2

α(Γ)
with respect to the norm ‖u‖H−sα (Γk)

:= ‖(u ◦ σk)(1 + |∇σk|2)1/2‖α,−s. We in particular set

Vk
α := H

1
2
α(Γk) and

(
Vk
α

)′
:= H

− 1
2

α (Γk).

Finally, we introduce the space L2
α,t(Γk), k ∈ K0, which is defined by

L2
α,t(Γk) :=

{
u ∈ L2

α(Γk) : u · nk = 0
}
.

This function space is identified with the space of two-dimensional tangential vector fields - sections of the
tangent bundle TΓk of Γk for almost every x ∈ Γk.

Traces of vector fields on each of the scattering surfaces Γk, k ∈ K0, are deduced from the classical traces of
vector fields on the boundary of bounded polyhedral Lipschitz domains that contain Γk, such as GH, with the
help of suitable truncation procedures. For details on the classical traces, we refer the reader to [2]-[5].

Definition 3.1. Let u ∈ C∞c (Gk) or u ∈ C∞c (G+
k ). Then we define the upper Dirichlet, Neumann and

Dirichlet tangential components traces of u on Γk as

γ+
D,ku := (nk × u)|Γk , γ+

Nκ,k
u := κ−1 (nk × curl u)|Γk ,

π+
D,ku := ((nk × u)× nk)|Γk .

Similarly, we have

γ−D,ku := (nk × u)|Γk , γ−Nκ,ku := κ−1 (nk × curl u)|Γk
π−D,ku := ((nk × u)× nk)|Γk

for u ∈ C∞c (Gk+1) or u ∈ C∞c (G−k ).

4



Remark 3.2 (Notation). Let G be a bounded polyhedral Lipschitz domain such that Γk ⊂ ∂G. Additionally,
let γ : H1

α(G) → Vk
α be the standard vector trace operator on Γk, k ∈ K0. We denote by γ−1 one of its

right inverses. From here on, the Dirichlet trace γD,k and the Dirichlet tangential components trace πD,k shall
be interpreted as the composite operators γD,kγ

−1 and πD,kγ
−1, respectively, if they act on traces - lying, for

instance, in the space Vk
α.

For k ∈ K0, we define the trace spaces Vk
α,γ and Vk

α,π by

Vk
α,γ := γD,k(V

k
α) and Vk

α,π := πD,k(V
k
α).

Endowed with the norms

‖u‖Vk
α,γ

:= inf
v∈Vk

α

{
‖v‖Vk

α
: γD,kv = u

}
and ‖u‖Vk

α,π
:= inf

v∈Vk
α

{
‖v‖Vk

α
: πD,kv = u

}
respectively, the spaces Vk

α,γ and Vk
α,π , k ∈ K0, are Hilbert spaces. These norms guarantee the continuity of

the Dirichlet trace γD,k and the Dirichlet tangential components trace πD,k. The mappings γD,k : Vk
α → Vk

α,γ

and πD,k : Vk
α → Vk

α,π are isomorphisms by construction (cf. [4, p. 683]). The density of Vk
α in L2

α(Γk) yields

that Vk
α,γ and Vk

α,π are dense subspaces of L2
α,t(Γk). Their dual spaces (Vk

α,γ)′ and (Vk
α,π)′ are given with

respect to the pivot space L2
α,t(Γk). We emphasize that the spaces Vk

α,γ , Vk
α,π , (Vk

α,γ)′ and (Vk
α,π)′ are

considered as spaces of tangent fields of regularity 1/2 and −1/2, respectively.

In the following, we denote by iγ,k : L2
α,t(Γk) → L2

α(Γk) and iπ,k : L2
α,t(Γk) → L2

α(Γk) the adjoint
operators of γD,k and πD,k for k ∈ K0. They can be extended to the following isomorphisms:

iγ,k :
(
Vk
α,γ

)′
→
(
N (γD,k) ∩Vk

α

)◦
⊂
(
Vk
α

)′
, iπ,k :

(
Vk
α,π

)′
→
(
N (γD,k) ∩Vk

α

)◦
⊂
(
Vk
α

)′
,

where ·◦ denotes the polar set (defined, e.g., in [21, pp. 136ff.]).

We define an operator rk, k ∈ K0, by

rk : L2
α,t(Γk)→ L2

α,t(Γk), rk := i−1
π,kiγ,k.

This is the rotation operator corresponding to the geometric operation · ×nk. The operator rk can be extended
and restricted to mappings rk : Vk

α,π → Vk
α,γ and rk : (Vk

α,π)′ → (Vk
α,γ)′. For any choice of spaces rk,

k ∈ K0, is invertible with r−1
k = r′k = −rk, where r′k denotes the adjoint operator of rk with L2

α,t(Γk) as
pivot space. These and further insights on the rotation operator rk, k ∈ K0, are deduced from its nonperiodic
equivalent characterized in [3, p. 851].

From here on, we will frequently come across several surface differential operators on Γk, k ∈ K0: We denote
by∇Γ the tangential gradient, by divΓ the surface divergence, by curlΓ the tangential vector curl and by curlΓ
the surface scalar curl on Γk. The definitions of these operators on boundaries of bounded Lipschitz domains
can be found in [4]. The corresponding definitions on Γk are then easily deduced from the former definitions via
suitable truncation procedures. Therefore, we will not give further details in the following but refer to Bugert’s
PhD thesis [8, Section 2.2].

The spaces defined by

H
− 1

2
α (divΓ,Γk) :=

{
u ∈

(
Vk
α,π

)′
,divΓ u ∈ H−

1
2

α (Γk)

}
,

H
− 1

2
α (curlΓ,Γk) :=

{
u ∈

(
Vk
α,γ

)′
, divΓ u ∈ H−

1
2

α (Γk)

}
for k ∈ K0 are the trace spaces of Hα(curl, G) (Hα,loc(curl, G)) for a bounded (an unbounded) polyhedral
Lipschitz domain G such that Γk ⊂ ∂G. Endowed with the norms

‖j‖
H
− 1

2
α (divΓ,Γk)

:= ‖j‖(Vk
α,π)

′ + ‖divΓ j‖
H
− 1

2
α (Γk)

,
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‖j‖
H
− 1

2
α (curlΓ,Γk)

:= ‖j‖(Vk
α,π)

′ + ‖curlΓ j‖
H
− 1

2
α (Γk)

,

they are Hilbert spaces.

The trace operators γ±D,k and γ±Nκ,k can be extended to bounded linear operators

γ+
D,k :


Hα(curl, Gk) → H

− 1
2

α (divΓ,Γk) if k ∈ K,

Hα,loc(curl, Gk) → H
− 1

2
α (divΓ,Γk) if k = 0,

Hα,loc(curl, G
+
k ) → H

− 1
2

α (divΓ,Γk) if k ∈ K0,

(3.1)

γ−D,k :


Hα(curl, Gk) → H

− 1
2

α (divΓ,Γk−1) if k ∈ K,

Hα(curl, Gk) → H
− 1

2
α (divΓ,Γk−1) if k = N,

Hα,loc(curl, G
−
k ) → H

− 1
2

α (divΓ,Γk−1) if k ∈ KN ,

(3.2)

γ+
Nκ,k

:


Hα(curlcurl, Gk) → H

− 1
2

α (divΓ,Γk) if k ∈ K,

Hα,loc(curlcurl, Gk) → H
− 1

2
α (divΓ,Γk) if k = 0,

Hα,loc(curlcurl, G
+
k ) → H

− 1
2

α (divΓ,Γk) if k ∈ K0,

(3.3)

γ−Nκ,k :


Hα(curlcurl, Gk) → H

− 1
2

α (divΓ,Γk−1) if k ∈ K,

Hα(curlcurl, Gk) → H
− 1

2
α (divΓ,Γk−1) if k = N,

Hα,loc(curlcurl, G
−
k ) → H

− 1
2

α (divΓ,Γk−1) if k ∈ KN .

(3.4)

The operator rk can be considered as the mapping rk : H−1/2
α (divΓ,Γk) → H−1/2

α (curlΓ,Γk) for k ∈ K0.
This ensures that the bilinear form Bk : H−1/2

α (divΓ,Γk)×H−1/2

−α (divΓ,Γk)→ C, specified by

Bk(j,m) :=

∫
Γk

j · rk(m) dσ = −
∫

Γk

rk(j) ·m dσ for k ∈ K0, (3.5)

is well-defined. It is non-degenerate in the sense of [18, Definition 1.2.1]. A proof is found in [8, Lemma 2.57].

For technical reasons, we also consider the duality product analogous to Bk, k ∈ K0, on the boundary ∂Ω of
bounded Lipschitz domains Ω with an unit outer normal vector n:

B∂Ω : H−
1
2 (divΓ, ∂Ω)×H−

1
2 (divΓ, ∂Ω)→ C, B∂Ω :=

∫
∂Ω

j · r(m) dσ = −
∫
∂Ω
r(j) ·m dσ,

which is defined in [11, § 3] together with the Hilbert space H−1/2(divΓ, ∂Ω) - the nonperiodic equivalent of the
space H−1/2

α (divΓ,Γk), k ∈ K0. Here, the operator r corresponds to the nonperiodic version of the rotation
operator rk, k ∈ K0. For all u,v ∈ H(curl,Ω), we have the Green identity∫

Ω
curl u · v − u · curl v dx = B∂Ω(γDu, γDv). (3.6)

Next, we introduce the α-quasiperiodic potential operators relevant for this work. They are based on Gακ , the
α-quasiperiodic fundamental solution of the time-harmonic Helmholtz equations, specified by

Gακ(x, y) :=
i

8π2

∑
n∈Z2

ei
(
α(n)·(x̃−ỹ)+β(n)|x3−y3|

)
β(n)

, (3.7)
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where

β(n) :=



√
κ2 −

∣∣α(n)
∣∣2 with 0 ≤ arg

(
β(n)

)
< π if κ /∈ R−,

−
√
κ2 −

∣∣α(n)
∣∣2 if κ ∈ R− and κ2 −

∣∣α(n)
∣∣2 > 0,

i
√
κ2 −

∣∣α(n)
∣∣2 if κ ∈ R− and κ2 −

∣∣α(n)
∣∣2 > 0.

Assuming that κ2 6= |α(n)|2 for all n ∈ Z2, the function Gακ converges uniformly on compact sets in
R3 \ ∪n∈Z2 (2πn1, 2πn2, 0)T. Details on the derivation of Gακ and its analytical properties are given in the
habilitation thesis [1, §3].

The single layer potential on Γk, k ∈ K0, is given by(
Sα,κk u

)
(x) := 2

∫
Γk

Gακ(x, y)u(y) dσ(y), x ∈ (Q× R) \ Γk.

The related operator V α,κ
km is defined by

(
V α,κ
km u

)
(x) := 2

∫
Γk

Gακ(x, y)u(y) dσ(y) for x ∈ Γm,m ∈ K0.

For k = m, the operator V α,κ
kk corresponds to the classical scalar trace of the potential Sα,κk .

Lemma 3.3 ([8, Lemma 6.2]). Let s ∈ (0, 1) and k ∈ K0. Then the operator Sα,κk gives rise to a continuous
linear operator,

Sα,κk : Hs−1
α (Γk)→ H

s+ 1
2

α,loc(G
+
k ) ∪Hs+ 1

2
α,loc(G

−
k ), or

Sα,κk : Hs−1
α (Γk)→ H

s+ 1
2

α,loc(G
+
k ) ∪H

s+ 1
2

α,loc(G
−
k ).

The operator V α,κ
kk exhibits the following mapping properties:

V α,κ
kk : Hs−1

α (Γk)→ Hs
α(Γk) or V α,κ

kk : Hs−1
α (Γk)→ Hs

α(Γk).

Moreover, for m ∈ K0 such that k 6= m, both the operators V α,κ
km : Hs−1

α (Γk) → Hs
α(Γm) as well as

V α,κ
km : Hs−1

α (Γk)→ Hs
α(Γm) are compact.

These mapping properties hold for all s ∈ R if Γk and Γm are smooth surfaces.

Definition 3.4 (Electric potential). For a density j ∈ H−1/2
α (divΓ,Γk), the electric potential Ψα

Eκ,k
on Γk,

k ∈ K0, is defined by
Ψα

Eκ,kj := κSα,κk j + κ−1∇Sα,κk divΓ j.

By curl curl = −∆ +∇ div, it also has a representation as Ψα
Eκ,k

j = κ−1 curl curlSα,κk j.

Definition 3.5 (Magnetic potential). For a density m ∈ H−1/2
α (divΓ,Γk), we define the magnetic potential

Ψα
Mκ,k

on Γk, k ∈ K0, by

Ψα
Mκ,km := curlSα,κk m.

We in particular observe that

κ−1 curlΨα
Eκ,k = Ψα

Mκ,k and κ−1 curlΨα
Mκ,k = Ψα

Eκ,k. (3.8)

Lemma 3.3 and the identities (3.8) imply the following lemma.
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Lemma 3.6. The electromagnetic potentials Ψα
Eκ,k

and Ψα
Mκ,k

are continuous operators with the following
mapping properties:

Ψα
Eκ,k,Ψ

α
Mκ,k : H

− 1
2

α (divΓ,Γk)→ Hα,loc(curl, G
+
k ) ∪Hα,loc(curl, G

−
k ) for k ∈ K0,

where G±k are the semi-infinite domains from (2.4). For j,m ∈ H−1/2
α (divΓ,Γk), they satisfy the time-

harmonic Maxwell equations(
curl curl−κ2

)
Ψα

Eκ,kj = 0 and
(
curl curl−κ2

)
Ψα

Mκ,km = 0

in G±k as well as an outgoing wave condition of the form (2.12)-(2.13).

Defining [γ∗,k] := γ−∗,k − γ
+
∗,k for ∗ ∈ {D,Nκ} and k ∈ K0, the jump relations

[γD,k] Ψα
Eκ,k = 0, [γNκ,k] Ψα

Eκ,k = −2I, (3.9)

[γD,k] Ψα
Mκ,k = −2I, [γNκ,k] Ψα

Mκ,k = 0 (3.10)

hold.

The considerations in this article involve the boundary integral operators

Cα,κkm := {γD,k}Ψα
Eκ,m = {γNκ,k}Ψα

Mκ,m and Mα,κ
km := {γD,k}Ψα

Mκ,m = {γNκ,k}Ψα
Eκ,m

for x ∈ Γm, m ∈ K0, where {γ∗,k} := −1
2

(
γ−∗,k + γ+

∗,k

)
for ∗ ∈ {D,Nκ} and k ∈ K0.

Lemma 3.7. For k ∈ K0, the boundary integral operators Cα,κkk and Mα,κ
kk give rise to bounded linear op-

erators, Cα,κkk ,M
α,κ
kk : H−1/2

α (divΓ,Γk) → H−1/2
α (divΓ,Γk). For m ∈ K0, m 6= k, the operators Cα,κkm ,

Mα,κ
km : H−1/2

α (divΓ,Γm)→ H−1/2
α (divΓ,Γk) are compact.

This is easily entailed from Lemma 3.6 and the mapping properties (3.4) of the trace operators.

With the help of the jump relations (3.9) and (3.10), we are able to deduce the technical identities.

γ±D,kΨ
α
Eκ,k = γ±Nκ,kΨ

α
Mκ,k = −Cα,κkk , (3.11)

γ±Nκ,kΨ
α
Eκ,k = γ±D,kΨ

α
Mκ,k = −Mα,κ

kk ± I. (3.12)

For k 6= m, we have

γ±D,kΨ
α
Eκ,m = γ±Nκ,kΨ

α
Mκ,m = −Cα,κkm and γ±Nκ,kΨ

α
Eκ,m = γ±D,kΨ

α
Mκ,m = −Mα,κ

km . (3.13)

The subsequent lemma provides expressions for the adjoint operators
(
Cα,κkm

)′
,
(
Mα,κ
km

)′
of the boundary

integral operators Cα,κkm and Mα,κ
km with respect to the dual systems (see [18, Definition 1.2.3])

Bm(H
− 1

2
α (divΓ,Γm),H

− 1
2
−α(divΓ,Γm)) and Bk(H

− 1
2

α (divΓ,Γk),H
− 1

2
−α(divΓ,Γk)).

Lemma 3.8 ([8, Lemma 6.9]). Let k,m ∈ K0. The adjoint operators (Cα,κkm )′, (Mα,κ
km )′ of the integral oper-

ators Cα,κkm and Mα,κ
km with respect to the dual systems Bm(H−1/2

α (divΓ,Γm),H−1/2

−α (divΓ,Γm) as well as

Bk(H−1/2
α (divΓ,Γk),H

−1/2

−α (divΓ,Γk)) are (Cα,κkm )′ = −C−α,κmk and (Mα,κ
km )′ = −M−α,κmk . Thus, we have

Bk
(
Cα,κkmm, j

)
= −Bm

(
m, C−α,κmk j

)
and Bk

(
Mα,κ
kmm, j

)
= −Bm

(
m,M−α,κmk j

)
(3.14)

for all m ∈ H−1/2
α (divΓ,Γm) and all j ∈ H−1/2

−α (divΓ,Γk).
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Lemma 3.9 ([6, Lemma 3.13 and Corollary 3.15 for Γ := Γk]). For k ∈ K0, the boundary integral operators
Cα,κkk and I±Mα,κ

kk are Fredholm operators of index zero in H−1/2
α (divΓ,Γk).

The subsequent result is concerned with the invertibility of Cα,κkk .

Lemma 3.10 ([6, Lemma 3.16 for Γ := Γk]). The boundary integral operator Cα,κkk is invertible in the Hilbert
space H−1/2

α (divΓ,Γk) if and only if the homogeneous Dirichlet problem,{
curl curlE− κ2E = 0, divE = 0, γD,kE = 0

and E satisfies the outgoing wave condition
(3.15)

only has the trivial solution in both of the domains G+
k and G−k .

Remark 3.11. For several results in this article, we require the invertibility of the boundary integral operator
Cα,κkk in H−1/2

α (divΓ,Γk), which is equivalent to the uniqueness of (3.15) by Lemma 3.10. Even though there
exist several counterexamples to the uniqueness of (3.15) (see, e.g., [15], [16]), we assess the assumption that
Cα,κkk is invertible not to be very restrictive. For details, we refer to [8, Remark 4.46].

In the course of this article, the following three integral representations are employed.

Lemma 3.12 (Stratton-Chu integral representation, [8, Theorem 4.24]). Let E satisfy time-harmonic Maxwell’s
equations curl curlE − κ2E = 0 in G+

k ∪ G
−
k (see (2.4)) satisfying the outgoing wave condition. Then E

admits the integral representation

E(x) = −1

2

(
Ψα

Eκ,kj(x) + Ψα
Mκ,km(x)

)
for x ∈ G+

k ∪G
−
k ,

where j := [γNκ,k]E and m := [γD,k]E.

Lemma 3.13 (Stratton-Chu type integral representation, [8, Lemma 6.14]). Let the electric field E be an α-
quasiperiodic solution of time-harmonic Maxwell’s equations curl curlE− κ2E = 0 in the bounded domain
Gk, k ∈ K . Then E can be represented as

E =
1

2

(
Ψα

Eκ,kγ
+
Nκ,k

E + Ψα
Mκ,kγ

+
D,kE

)
− 1

2

(
Ψα

Eκ,k−1γ
−
Nκ,k−1E + Ψα

Mκ,k−1γ
−
D,k−1E

)
(3.16)

in Gk.

Lemma 3.14 ([8, Lemma 6.16]). Let the electric field E be an α-quasiperiodic solution of the time-harmonic
Maxwell equations curl curlE − κ2E = 0 in the bounded domain Gk, k ∈ K . Then E has a unique
representation

E = Ψα
Eκ,k−1j + Ψα

Eκ,km in Gk (3.17)

with the densities m ∈ H−1/2
α (divΓ,Γk) and j ∈ H−1/2

α (divΓ,Γk−1) if the boundary integral operators
Cα,κk−1,k−1 and Cα,κkk satisfyN (Cα,κk−1,k−1) = N (Cα,κkk ) = {0}.

The last result in this section serves as an auxiliary tool in some of the proofs in this article.

Lemma 3.15. Let k ∈ K . If we have

Ψα
Eκk ,k−1jk−1 = Ψα

Eκk ,k
jk in Gk

with jk−1 ∈ H−1/2
α (divΓ,Γk−1) and jk ∈ H−1/2

α (divΓ,Γk) for some k ∈ K , then

Ψα
Eκk ,k−1jk−1 = Ψα

Eκk ,k
jk = 0 in Gk.

Remark 3.16 (Notation). In order to keep the notation as simple and as readable as possible, we introduce the
convention to replace the superscript κk by (k) for k ∈ KN

0 . If κk occurs as a subscript, we abbreviate it by k.

Thus, we for example write C
α,(k)
kk instead of Cα,κkkk and β

(n)
k instead of β

(n)
κk .

Moreover, we separate two-component subscripts as they occur in the operators V α,κ
km , Cα,κkm and Mα,κ

km by
commata if misinterpretations are possible. This notation has already been applied in Lemma 3.14.
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4 A system of integral equations

Below, we give an equivalent formulation of the 2π-biperiodic multilayered electromagnetic scattering problem
in the sense of boundary integral equations that is deduced by extending the combined potential ansatz used in
[6] for the 2π-biperiodic single profile electromagnetic scattering problem to multi-profile scattering. This yields
a parity-dependent system of integral equations whose size is directly proportional to the number of scattering
interfaces in the multilayered scattering structure.

4.1 Boundary integral equation formulation

We assume an α-quasiperiodic Stratton-Chu representation of the electric field E0 in the layer G0 above the
scattering structure, which is possible by Lemma 3.12. In the subsequent layers, a two-term α-quasiperiodic
electric potential ansatz with unknown densities jk ∈ H−1/2

α (divΓ,Γk) (for k ∈ K0 if N is even or for
k ∈ K0 \ {N − 1} if N is odd) alternates with an α-quasiperiodic Stratton-Chu type integral representation
in the sense of Lemma 3.13. The field EN in GN below the scatterer is finally either considered to have an
α-quasiperiodic Stratton-Chu integral representation if N is even, or to be an α-quasiperiodic electric potential
applied to the unknown density jN−1 lying in H−1/2

α (divΓ,ΓN−1) if N is odd. Mathematically speaking, the
described potential ansatz reads as

E0 =
1

2

(
Ψα

Eκ0 ,0
γ+

Nκ0 ,0
E0 + Ψα

Mκ0 ,0
γ+

D,0E0

)
(4.1)

in G0,

Ek =


1

2

(
Ψα

Eκk ,k
γ+

Nκk ,k
Ek + Ψα

Mκk
,kγ

+
D,kEk

−Ψα
Eκk ,k−1γ

−
Nκk ,k−1Ek −Ψα

Mκk
,k−1γ

−
D,k−1Ek

) for even k,

Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk for odd k

(4.2)

in Gk for k ∈ K ,

EN =


−1

2

(
Ψα

EκN ,N−1γ
−
NκN ,N−1EN + Ψα

MκN
,N−1γ

−
D,N−1EN

)
for even N,

Ψα
EκN ,N−1jN−1 for odd N

(4.3)

in GN . By Lemma 3.14, the densities jk, k ∈ K0, are uniquely determined if

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for odd k ∈ K

and additionallyN (C
α,(N)
N−1,N−1) = {0}, in case of an odd number of interfaces N , holds.

The ansatz presented above is inspired by [20] and leads to a system of N integral equations for the unknown
densities

jk ∈ H
− 1

2
α (divΓ,Γk), k ∈ K0.

Written in matrix form, its structure slightly differs depending on whether N is even or odd.

Remark 4.1 (Notation). In order to simplify the notation in this section, we define the auxiliary index sets Keven

and Kodd connected to the N -index set K as

Keven := {k ∈ K : k is even} and Kodd := {k ∈ K : k is odd} .
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The rest of this subsection is concerned with the detailed derivation of the already mentioned boundary integral
equations, based on the potential ansatz (4.1)-(4.3). Their presentation in terms of a system of linear integral
equations is then seen in the subsequent subsection. For convenience, we recall the transmission conditions
(2.8)-(2.11). Expressing them in the form

γ−D,0E1 = γ+
D,0E0 + γ−D,0E

i on Γ0, (4.4)
κ1

µ1
γ−Nκ1 ,0

E1 =
κ0

µ0

(
γ+

Nκ0 ,0
E0 + γ−Nκ0 ,0

Ei
)

on Γ0, (4.5)

γ−D,kEk+1 = γ+
D,kEk on Γk for k ∈ K, (4.6)

κk+1

µk+1
γ−Nκk+1

,kEk+1 =
κk
µk
γ+

Nκk ,k
Ek on Γk for k ∈ K (4.7)

simplifies the following considerations. Since we require the incident electric field Ei to solve the time-harmonic
Maxwell equations with respect to the wave number κ0 in absence of the 2π-biperiodic multilayered structure,
Lemma 3.12 implies that Ei can be represented as

Ei = −1

2

(
Ψα

Eκ0 ,0
γ−Nκ0 ,0

Ei + Ψα
Mκ0 ,0

γ−D,0E
i
)

in G−0 , (4.8)

where G−0 := {x ∈ Q× R : x3 < σ0(x̃)}. We then apply the Dirichlet traces γ+
D,0 in (4.1) and γ−D,0 in (4.8)

to arrive at

γ+
D,0E0 = −1

2

(
C
α,(0)
00 γ+

Nκ0 ,0
E0 +

(
M

α,(0)
00 − I

)
γ+

D,0E0

)
, (4.9)

γ−D,0E
i =

1

2

(
C
α,(0)
00 γ−Nκ0 ,0

Ei +
(
M

α,(0)
00 + I

)
γ−D,0E

i
)

(4.10)

with the help of the identities (3.11)-(3.12). We then subtract equation (4.9) from equation (4.10) and multiply
the result by the factor 2κ0/µ0:

κ0

µ0
C
α,(0)
00

(
γ+

Nκ0 ,0
E0 + γ−Nκ0 ,0

Ei
)

+
κ0

µ0

(
M

α,(0)
00 + I

)(
γ+

D,0E0 + γ−D,0E
i
)

= 2
κ0

µ0
γ−D,0E

i. (4.11)

Exploiting the transmission conditions (4.4)-(4.5) as well as the potential ansatz (4.2) for k = 1, we moreover
infer that

κ1

µ1
C
α,(0)
00 γ−Nκ1 ,0

(
Ψα

Eκ1 ,0
j0 + Ψα

Eκ1 ,1
j1

)
+
κ0

µ0

(
M

α,(0)
00 + I

)
γ−D,0

(
Ψα

Eκ1 ,0
j0 + Ψα

Eκ1 ,1
j1

)
= 2

κ0

µ0
γ−D,0E

i.

Finally, the identities (3.11)-(3.12) give rise to the boundary integral equation[
κ1

µ1
C
α,(0)
00

(
M

α,(1)
00 + I

)
+
κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
00

]
j0

+

[
κ1

µ1
C
α,(0)
00 M

α,(1)
01 +

κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
01

]
j1 = −2

κ0

µ0
γ−D,0E

i

(4.12)

on Γ0. Similarly, we obtain boundary integral equations on Γk−1 and Γk, k ∈ Keven \ {N − 1}. Indeed,
we separately apply the Dirichlet traces γ−D,k−1 and γ+

D,k to the electric field Ek, k ∈ Keven \ {N − 1},
represented as in (4.2). Using (3.11)-(3.13), this leads to

− κk
µk

[
C
α,(k)
k−1,kγ

+
Nκk ,k

Ek +M
α,(k)
k−1,kγ

+
D,kEk

+C
α,(k)
k−1,k−1γ

−
Nκk ,k−1Ek +

(
M

α,(k)
k−1,k−1 − I

)
γ−D,k−1Ek

]
= 0
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and

− κk
µk

[
C
α,(k)
kk γ+

Nκk ,k
Ek +

(
M

α,(k)
kk + I

)
γ+

D,kEk + C
α,(k)
k,k−1γ

−
Nκk ,k−1Ek +M

α,(k)
k,k−1γ

−
D,k−1Ek

]
= 0,

where we additionally multiplied both equations by 2κk/µk. Next, we insert the transmission conditions (4.6)-
(4.7) as well as the electric potential ansatzes for Ek−1 and Ek+1 from (4.2) into both equations to arrive
at

− κk+1

µk+1
C
α,(k)
k−1,kγ

−
Nκk+1

,k

(
Ψα

Eκk+1
,kjk + Ψα

Eκk+1
,k+1jk+1

)
− κk
µk
M

α,(k)
k−1,kγ

−
D,k

(
Ψα

Eκk+1
,kjk + Ψα

Eκk+1
,k+1jk+1

)
+
κk−1

µk−1
C
α,(k)
k−1,k−1γ

+
Nκk−1

,k−1

(
Ψα

Eκk−1
,k−2jk−2 + Ψα

Eκk−1
,k−1jk−1

)
+
κk
µk

(
M

α,(k)
k−1,k−1 − I

)
γ+

D,k−1

(
Ψα

Eκk−1
,k−2jk−2 + Ψα

Eκk−1
,k−1jk−1

)
= 0

and

− κk+1

µk+1
C
α,(k)
kk γ+

Nκk ,k

(
Ψα

Eκk+1
,kjk + Ψα

Eκk+1
,k+1jk+1

)
− κk
µk

(
M

α,(k)
kk + I

)
γ+

D,k

(
Ψα

Eκk+1
,kjk + Ψα

Eκk+1
,k+1jk+1

)
+
κk−1

µk−1
C
α,(k)
k,k−1γ

−
Nκk ,k−1

(
Ψα

Eκk−1
,k−2jk−2 + Ψα

Eκk−1
,k−1jk−1

)
+
κk
µk
M

α,(k)
k,k−1γ

−
D,k−1

(
Ψα

Eκk−1
,k−2jk−2 + Ψα

Eκk−1
,k−1jk−1

)
= 0.

Eventually, the technical identities (3.11)-(3.13) yield the boundary integral equation

−
[
κk−1

µk−1
C
α,(k)
k−1,k−1M

α,(k−1)
k−1,k−2 +

κk
µk

(
M

α,(k)
k−1,k−1 − I

)
C
α,(k−1)
k−1,k−2

]
jk−2

−
[
κk−1

µk−1
C
α,(k)
k−1,k−1

(
M

α,(k−1)
k−1,k−1 − I

)
+
κk
µk

(
M

α,(k)
k−1,k−1 − I

)
C
α,(k−1)
k−1,k−1

]
jk−1

+

[
κk+1

µk+1
C
α,(k)
k−1,k

(
M

α,(k+1)
kk + I

)
+
κk
µk
M

α,(k)
k−1,kC

α,(k+1)
kk

]
jk

+

[
κk+1

µk+1
C
α,(k)
k−1,kM

α,(k+1)
k,k+1 +

κk
µk
M

α,(k)
k−1,kC

α,(k+1)
k,k+1

]
jk+1 = 0

on Γk−1 and the boundary integral equation

−
[
κk−1

µk−1
C
α,(k)
k,k−1M

α,(k−1)
k−1,k−2 +

κk
µk
M

α,(k)
k,k−1C

α,(k−1)
k−1,k−2

]
jk−2

−
[
κk−1

µk−1
C
α,(k)
k,k−1

(
M

α,(k−1)
k−1,k−1 − I

)
+
κk
µk
M

α,(k)
k,k−1C

α,(k−1)
k−1,k−1

]
jk−1

+

[
κk+1

µk+1
C
α,(k)
kk

(
M

α,(k+1)
kk + I

)
+
κk
µk

(
M

α,(k)
kk + I

)
C
α,(k+1)
kk

]
jk

+

[
κk+1

µk+1
C
α,(k)
kk M

α,(k+1)
k,k+1 +

κk
µk

(
M

α,(k)
kk + I

)
C
α,(k+1)
k,k+1

]
jk+1 = 0

on Γk for k ∈ Keven \ {N − 1}. Due to the characteristics of the potential ansatz (4.3) for EN in GN , the
boundary integral equations on ΓN−1 for even N and those on ΓN−2 as well as on ΓN−1 for odd N differ
slightly from the boundary integral equations derived before. The analogous ideas as already applied above
provide

−
[
κN−1

µN−1
C
α,(N)
N−1,N−1M

α,(N−1)
N−1,N−2 −

κN
µN

(
M

α,(N)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−2

]
jN−2
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−
[
κN−1

µN−1
C
α,(N)
N−1,N−1

(
M

α,(N−1)
N−1,N−1 − I

)
− κN
µN

(
M

α,(N)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−1

]
jN−1 = 0

on ΓN−1 for even N ,

−
[
κN−2

µN−2
C
α,(N−1)
N−2,N−2M

α,(N−2)
N−2,N−3 +

κN−1

µN−1

(
M

α,(N−1)
N−2,N−2 − I

)
C
α,(N−2)
N−2,N−3

]
jN−3

−
[
κN−2

µN−2
C
α,(N−1)
N−2,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
+
κN−1

µN−1

(
M

α,(N−1)
N−2,N−2 − I

)
C
α,(N−2)
N−2,N−2

]
jN−2

+

[
κN
µN

C
α,(N−1)
N−2,N−1

(
M

α,(N−2)
N−1,N−1 + I

)
+
κN−1

µN−1
M

α,(N−1)
N−2,N−1C

α,(N)
N−1,N−1

]
jN−1 = 0

on ΓN−2 for odd N , and

−
[
κN−2

µN−2
C
α,(N−1)
N−1,N−2M

α,(N−2)
N−2,N−3 +

κN−1

µN−1
M

α,(N−1)
N−1,N−2C

α,(N−2)
N−2,N−3

]
jN−3

−
[
κN−2

µN−2
C
α,(N−1)
N−1,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
+
κN−1

µN−1
M

α,(N−1)
N−1,N−2C

α,(N−2)
N−2,N−2

]
jN−2

+

[
κN
µN

C
α,(N)
N−1,N−1

(
M

α,(N)
N−1,N−1 + I

)
+
κN−1

µN−1

(
M

α,(N−1)
N−1,N−1 + I

)
C
α,(N)
N−1,N−1

]
jN−1 = 0

on ΓN−1 for odd N .

4.2 Structure of the system of linear integral equations

For an even number of interfaces N , the linear system is structured as follows:

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗


︸ ︷︷ ︸

=:Meven
α



j0
j1
j2
j3
...

jN−4

jN−3

jN−2

jN−1


=



−2κ0
µ0
γ−D,0E

i

0
0
0
...
0
0
0
0


, (4.13)

where the nonvanishing coefficients of M even
α are given by

(M even
α )1,1 =

κ1

µ1
C
α,(0)
00

(
M

α,(1)
00 + I

)
+
κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
00 ,

(M even
α )1,2 =

κ1

µ1
C
α,(0)
00 M

α,(1)
01 +

κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
01 ,

(M even
α )N,N−1 = −κN−1

µN−1
C
α,(N)
N−1,N−1M

α,(N−1)
N−1,N−2 −

κN
µN

(
M

α,(N)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−2,

(M even
α )N,N = −κN−1

µN−1
C
α,(N)
N−1,N−1

(
M

α,(N−1)
N−1,N−1 − I

)
− κN
µN

(
M

α,(N)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−1

and

(M even
α )k+1,k = −κk

µk
C
α,(k+1)
kk M

α,(k)
k,k−1 −

κk+1

µk+1

(
M

α,(k+1)
kk − I

)
C
α,(k)
k,k−1,

13



(M even
α )k+1,k+1 = −κk

µk
C
α,(k+1)
kk

(
M

α,(k)
kk − I

)
− κk+1

µk+1

(
M

α,(k+1)
kk − I

)
C
α,(k)
kk ,

(M even
α )k+1,k+2 =

κk+2

µk+2
C
α,(k+1)
k,k+1

(
M

α,(k+2)
k+1,k+1 + I

)
+
κk+1

µk+1
M

α,(k+1)
k,k+1 C

α,(k+2)
k+1,k+1,

(M even
α )k+1,k+3 =

κk+2

µk+2
C
α,(k+1)
k,k+1 M

α,(k+2)
k+1,k+2 +

κk+1

µk+1
M

α,(k+1)
k,k+1 C

α,(k+2)
k+1,k+2,

(M even
α )k+2,k = −κk

µk
C
α,(k+1)
k+1,k M

α,(k)
k,k−1 −

κk+1

µk+1
M

α,(k+1)
k+1,k C

α,(k)
k,k−1,

(M even
α )k+2,k+1 = −κk

µk
C
α,(k+1)
k+1,k

(
M

α,(k)
kk − I

)
− κk+1

µk+1
M

α,(k+1)
k+1,k C

α,(k)
kk ,

(M even
α )k+2,k+2 =

κk+2

µk+2
C
α,(k+1)
k+1,k+1

(
M

α,(k+2)
k+1,k+1 + I

)
+
κk+1

µk+1

(
M

α,(k+1)
k+1,k+1 + I

)
C
α,(k+2)
k+1,k+1,

(M even
α )k+2,k+3 =

κk+2

µk+2
C
α,(k+1)
k+1,k+1M

α,(k+2)
k+1,k+2 +

κk+1

µk+1

(
M

α,(k+1)
k+1,k+1 + I

)
C
α,(k+2)
k+1,k+2

for k ∈ Kodd \ {N − 1}. Lemma 3.7 implies that

(M even
α )1,l : H

− 1
2

α (divΓ,Γl−1) → H
− 1

2
α (divΓ,Γ0) for l ∈ {1, 2},

(M even
α )N,N−l : H

− 1
2

α (divΓ,ΓN−l−1)→ H
− 1

2
α (divΓ,ΓN−1) for l ∈ {0, 1}

and, for k ∈ Kodd \ {N − 1}, that

(M even
α )k+1,k+l : H

− 1
2

α (divΓ,Γk+l−1)→ H
− 1

2
α (divΓ,Γk)

(M even
α )k+2,k+l−1 : H

− 1
2

α (divΓ,Γk+l−2)→ H
− 1

2
α (divΓ,Γk+1)

 for l ∈ {0, . . . , 3}

are bounded linear operators.

For an odd number of interfaces N , we have a system structure of the form

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


︸ ︷︷ ︸

=:Modd
α



j0
j1
j2
j3
...

jN−4

jN−3

jN−2

jN−1


=



−2κ0
µ0
γ−D,0E

i

0
0
0
...
0
0
0
0


, (4.14)

where the nonvanishing elements of the matrix Modd
α are given by(

Modd
α

)
1,1

= (M even
α )1,1 ,(

Modd
α

)
1,2

= (M even
α )1,2 ,(

Modd
α

)
N−1,N−2

= −κN−2

µN−2
C
α,(N−1)
N−2,N−2M

α,(N−2)
N−2,N−3 −

κN−1

µN−1

(
M

α,(N−1)
N−2,N−2 − I

)
C
α,(N−2)
N−2,N−3,(

Modd
α

)
N−1,N−1

= −κN−2

µN−2
C
α,(N−1)
N−2,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
− κN−1

µN−1

(
M

α,(N−1)
N−2,N−2 − I

)
C
α,(N−2)
N−2,N−2,(

Modd
α

)
N−1,N

=
κN
µN

C
α,(N−1)
N−2,N−1

(
M

α,(N−2)
N−1,N−1 + I

)
+
κN−1

µN−1
M

α,(N−1)
N−2,N−1C

α,(N)
N−1,N−1,
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(
Modd
α

)
N,N−2

= −κN−2

µN−2
C
α,(N−1)
N−1,N−2M

α,(N−2)
N−2,N−3 −

κN−1

µN−1
M

α,(N−1)
N−1,N−2C

α,(N−2)
N−2,N−3,(

Modd
α

)
N,N−1

= −κN−2

µN−2
C
α,(N−1)
N−1,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
− κN−1

µN−1
M

α,(N−1)
N−1,N−2C

α,(N−2)
N−2,N−2,(

Modd
α

)
N,N

=
κN
µN

C
α,(N−1)
N−1,N−1

(
M

α,(N)
N−1,N−1 + I

)
+
κN−1

µN−1

(
M

α,(N−1)
N−1,N−1 + I

)
C
α,(N)
N−1,N−1

and (
Modd
α

)
k+1,k

= (M even
α )k+1,k ,

(
Modd
α

)
k+2,k

= (M even
α )k+2,k ,(

Modd
α

)
k+1,k+1

= (M even
α )k+1,k+1 ,

(
Modd
α

)
k+2,k+1

= (M even
α )k+2,k+1 ,(

Modd
α

)
k+1,k+2

= (M even
α )k+1,k+2 ,

(
Modd
α

)
k+2,k+2

= (M even
α )k+2,k+2 ,(

Modd
α

)
k+1,k+3

= (M even
α )k+1,k+3 ,

(
Modd
α

)
k+2,k+3

= (M even
α )k+2,k+3

for k ∈ Kodd \ {N − 2}. Again by Lemma 3.7, they give rise to bounded linear operators(
Modd
α

)
1,l

: H
− 1

2
α (divΓ,Γl−1) → H

− 1
2

α (divΓ,Γ0) for l ∈ {1, 2},(
Modd
α

)
N−1,N+l−2

: H
− 1

2
α (divΓ,ΓN+l−3)→ H

− 1
2

α (divΓ,ΓN−2)(
Modd
α

)
N,N+l−2

: H
− 1

2
α (divΓ,ΓN+l−3)→ H

− 1
2

α (divΓ,ΓN−1)

 for
l ∈ {0, 1, 2}

and, for k ∈ Kodd \ {N − 2}, to bounded linear operators(
Modd
α

)
k+1,k+l

: H
− 1

2
α (divΓ,Γk+l−1)→ H

− 1
2

α (divΓ,Γk)(
Modd
α

)
k+2,k+l−1

: H
− 1

2
α (divΓ,Γk+l−1)→ H

− 1
2

α (divΓ,Γk+1)

 for l ∈ {0, 1, 2, 3}.

Remark 4.2. In the special case that the multilayered scatterer just consists of one interface, i.e, N = 1, we
observe that system (4.14) reduces to the singular integral equation

ρ1C
α,(0)
00

(
M

α,(1)
00 + I

)
+
(
M

α,(0)
00 + I

)
C
α,(1)
00 = −2γ−D,0E

i with ρ1 =
µ0κ1

µ1κ0
.

This corresponds to the main boundary integral equation in [6], which has already been studied extensively
therein. In this paper, we therefore only consider “real” 2π-biperiodic multilayered structures consisting ofN ≥ 2
scattering profiles.

4.3 Structure of the adjoint system of linear integral equations

Next, we reverse our previously considered potential ansatz (4.1)-(4.3): E0 is now assumed to be an α-
quasiperiodic electric potential applied to an unknown density j0 ∈ H−1/2

α (divΓ,Γ0). In the layersGk, k ∈ K ,
we alternate an α-quasiperiodic Stratton-Chu type integral representation in the sense of Lemma 3.13 and a
two-term α-quasiperiodic electric potential ansatz with the unknown densities jk ∈ H−1/2

α (divΓ,Γk) (k ∈ K if
N is even or k ∈ K \{N−1} ifN is odd). The field EN traveling in the bottom layerGN is either represented
as a simple α-quasiperiodic electric potential applied to the unknown density jN−1 ∈ H−1/2

α (divΓ,ΓN−1) if
N is even, or as a Stratton-Chu integral given by Lemma 3.12 if N is odd. In summary, we assume that

E0 = Ψα
Eκ0 ,0

j0 (4.15)
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in G0,

Ek =



Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk for even k,

1

2

(
Ψα

Eκk ,k
γ+

Nκk ,k
Ek + Ψα

Mκk
,kγ

+
D,kEk

−Ψα
Eκk ,k−1γ

−
Nκk ,k−1Ek −Ψα

Mκk
,k−1γ

−
D,k−1Ek

) for odd k

(4.16)

in Gk for k ∈ K ,

EN =


−1

2

(
Ψα

EκN ,N−1γ
−
NκN ,N−1EN + Ψα

MκN
,N−1γ

−
D,N−1EN

)
for even N,

Ψα
EκN ,N−1jN−1 for odd N

(4.17)

in GN . Based on this potential ansatz, we again obtain two systems of integral equations depending on the
parity of the number of grating interfaces N . They turn out to be a useful tool in the analysis of the integral
equation systems (4.13) and (4.14). The detailed derivation is not carried out here since it is very similar to the
one leading to (4.13) and (4.14).

If N is even, the system has the following structure:

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


︸ ︷︷ ︸

=:W even
α



j0
j1
j2
j3
...

jN−4

jN−3

jN−2

jN−1


= fα (4.18)

with the nonvanishing elements

(W even
α )1,1 =

κ0

µ0
C
α,(1)
00

(
M

α,(0)
00 − I

)
+
κ1

µ1

(
M

α,(1)
00 − I

)
C
α,(0)
00 ,

(W even
α )2,1 =

κ0

µ0
C
α,(1)
10

(
M

α,(0)
00 − I

)
+
κ1

µ1
M

α,(1)
10 C

α,(0)
00 ,

(W even
α )N−1,N = −κN

µN
C
α,(N−1)
N−2,N−1

(
M

α,(N)
N−1,N−1 + I

)
− κN−1

µN−1
M

α,(N−1)
N−2,N−1C

α,(N)
N−1,N−1,

(W even
α )N,N = −κN

µN
C
α,(N−1)
N−1,N−1

(
M

α,(N)
N−1,N−1 + I

)
− κN−1

µN−1

(
M

α,(N−1)
N−1,N−1 + I

)
C
α,(N)
N−1,N−1

and

(W even
α )k,k+1 = −κk+1

µk+1
C
α,(k)
k−1,k

(
M

α,(k+1)
kk + I

)
− κk
µk
M

α,(k)
k−1,kC

α,(k+1)
kk ,

(W even
α )k+1,k+1 = −κk+1

µk+1
C
α,(k)
kk

(
M

α,(k+1)
kk + I

)
− κk
µk

(
M

α,(k)
kk + I

)
C
α,(k+1)
kk ,

(W even
α )k+2,k+1 =

κk+1

µk+1
C
α,(k+2)
k+1,k+1M

α,(k+1)
k+1,k +

κk+2

µk+2

(
M

α,(k+2)
k+1,k+1 − I

)
C
α,(k+1)
k+1,k ,

(W even
α )k+3,k+1 =

κk+1

µk+1
C
α,(k+2)
k+2,k+1M

α,(k+1)
k+1,k +

κk+2

µk+2
M

α,(k+2)
k+2,k+1C

α,(k+1)
k+1,k ,
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(W even
α )k,k+2 = −κk+1

µk+1
C
α,(k)
k−1,kM

α,(k+1)
k,k+1 − κk

µk
M

α,(k)
k−1,kC

α,(k+1)
k,k+1 ,

(W even
α )k+1,k+2 = −κk+1

µk+1
C
α,(k)
kk M

α,(k+1)
k,k+1 − κk

µk

(
M

α,(k)
kk + I

)
C
α,(k+1)
k,k+1 ,

(W even
α )k+2,k+2 =

κk+1

µk+1
C
α,(k+2)
k+1,k+1

(
M

α,(k+1)
k+1,k+1 − I

)
+
κk+2

µk+2

(
M

α,(k+2)
k+1,k+1 − I

)
C
α,(k+1)
k+1,k+1,

(W even
α )k+3,k+2 =

κk+1

µk+1
C
α,(k+2)
k+2,k+1

(
M

α,(k+1)
k+1,k+1 − I

)
+
κk+2

µk+2
M

α,(k+2)
k+2,k+1C

α,(k+1)
k+1,k+1

for k ∈ Kodd\{N−1}. The right-hand side fα = (fα,1, . . . , fα,N )T ∈
∏N−1
k=0 H−1/2

α (divΓ,Γk) is composed
of the following two-dimensional vector fields:

fα,1 =
κ0

µ0
C
α,(1)
00 γ+

Nκ0 ,0
Ei +

κ1

µ1

(
M

α,(1)
00 − I

)
γ+

D,0E
i, (4.19)

fα,2 =
κ0

µ0
C
α,(1)
10 γ+

Nκ0 ,0
Ei +

κ1

µ1
M

α,(1)
10 γ+

D,0E
i, (4.20)

fα,k = 0 for k = 3, . . . , N. (4.21)

With Lemma 3.7, we observe that

(W even
α )l,1 : H

− 1
2

α (divΓ,Γ0) → H
− 1

2
α (divΓ,Γl−1) for l ∈ {1, 2},

(W even
α )N−l,N : H

− 1
2

α (divΓ,ΓN−1)→ H
− 1

2
α (divΓ,ΓN−l−1) for l ∈ {0, 1}

and, for k ∈ Kodd \ {N − 1},

(W even
α )k+l,k+1 : H

− 1
2

α (divΓ,Γk) → H
− 1

2
α (divΓ,Γk+l−1)

(W even
α )k+l−1,k+2 : H

− 1
2

α (divΓ,Γk+1) → H
− 1

2
α (divΓ,Γk+l−2)

 for l ∈ {0, . . . , 3}

are bounded linear operators.

If the number of grating interfaces N is odd, our potential ansatz leads to a system of the form

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗


︸ ︷︷ ︸

=:W odd
α



j0
j1
j2
j3
...

jN−4

jN−3

jN−2

jN−1


= fα, (4.22)

where the nonvanishing elements of the matrix W odd
α are given by(

W odd
α

)
1,1

= (M even
α )1,1 ,(

W odd
α

)
2,1

= (M even
α )2,1 ,(

W odd
α

)
N−2,N−1

= −κN−1

µN−1
C
α,(N−2)
N−3,N−2

(
M

α,(N−1)
N−2,N−2 + I

)
− κN−2

µN−2
M

α,(N−2)
N−3,N−2C

α,(N−1)
N−2,N−2,
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(
W odd
α

)
N−1,N−1

= −κN−1

µN−1
C
α,(N−2)
N−2,N−2

(
M

α,(N−1)
N−2,N−2 + I

)
− κN−2

µN−2

(
M

α,(N−2)
N−2,N−2 + I

)
C
α,(N−1)
N−2,N−2,(

W odd
α

)
N,N−1

=
κN−1

µN−1
C
α,(N)
N−1,N−1M

α,(N−1)
N−1,N−2 +

κN
µN

(
M

α,(N−2)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−2,(

W odd
α

)
N−2,N

= −κN−2

µN−2
M

α,(N−2)
N−3,N−2C

α,(N−1)
N−2,N−1 −

κN−1

µN−1
C
α,(N−2)
N−3,N−2M

α,(N−1)
N−2,N−1,(

W odd
α

)
N−1,N

= −κN−1

µN−1
C
α,(N−2)
N−2,N−2M

α,(N−1)
N−2,N−1 −

κN−2

µN−2

(
M

α,(N−2)
N−2,N−2 + I

)
C
α,(N−1)
N−2,N−1,(

W odd
α

)
N,N

=
κN−1

µN−1
C
α,(N)
N−1,N−1

(
M

α,(N−1)
N−1,N−1 − I

)
+
κN
µN

(
M

α,(N)
N−1,N−1 − I

)
C
α,(N−1)
N−1,N−1

and (
W odd
α

)
k,k+1

= (W even
α )k,k+1 ,

(
W odd
α

)
k,k+2

= (W even
α )k,k+2 ,(

W odd
α

)
k+1,k+1

= (W even
α )k+1,k+1 ,

(
W odd
α

)
k+1,k+2

= (W even
α )k+1,k+2 ,(

W odd
α

)
k+2,k+1

= (W even
α )k+2,k+1 ,

(
W odd
α

)
k+2,k+2

= (W even
α )k+2,k+2 ,(

W odd
α

)
k+3,k+1

= (W even
α )k+3,k+1 ,

(
W odd
α

)
k+3,k+2

= (W even
α )k+3,k+2

for k ∈ Kodd \ {N − 2}. The components of the right-hand side fα, which lies in the product space∏N−1
k=0 H−1/2

α (divΓ,Γk), are specified by (4.19)-(4.21). By Lemma 3.7, the nonvanishing elements of W odd
α

give rise to bounded linear operators(
W odd
α

)
l,1

: H
− 1

2
α (divΓ,Γ0) → H

− 1
2

α (divΓ,Γl−1) for l ∈ {1, 2},(
W odd
α

)
N+l−2,N−1

: H
− 1

2
α (divΓ,ΓN−2)→ H

− 1
2

α (divΓ,ΓN+l−3)(
W odd
α

)
N+l−2,N

: H
− 1

2
α (divΓ,ΓN−1)→ H

− 1
2

α (divΓ,ΓN+l−3)

 for
l ∈ {0, 1, 2}

and, for k ∈ Kodd \ {N − 2}, to bounded linear operators(
W odd
α

)
k+l,k+1

: H
− 1

2
α (divΓ,Γk) → H

− 1
2

α (divΓ,Γk+l−1)(
W odd
α

)
k+l−1,k+2

: H
− 1

2
α (divΓ,Γk+1) → H

− 1
2

α (divΓ,Γk+l−1)

 for l ∈ {0, 1, 2, 3}.

As the title of this section already indicates, the above described N × N operators W even
α and W odd

α cor-
responding to the integral equation systems (4.18) and (4.22) somehow correlate in an adjoint sense with the
N ×N operators M even

α and Modd
α from (4.13) and (4.14). In what exact sense this should be understood is

explained in the following: Consider an incident electric field Ei with the wave vector −α = (−α1,−α2, α3).
Then the potential ansatz in this subsection involving the densities jk ∈ H−1/2

−α (divΓ,Γk), k ∈ K0, yields the
two integral equation systems (4.18) and (4.22) in terms of (−α) with the right-hand sides f−α. The compo-
nents of the N × N operators defining these systems are all bounded linear integral operators with kernels
based on the (−α)-quasiperiodic Green function G−α(k) . With the help of Lemma 3.8, we now easily observe
that

Bl
(

(M even
α )l+1,j+1 j, l

)
= Bj

(
j,
(
W even
−α

)
j+1,l+1

l
)
,

Bl
((

Modd
α

)
l+1,j+1

j, l

)
= Bj

(
j,
(
W odd
−α

)
j+1,l+1

l

)
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for all l, j ∈ K0 as well as all j ∈ H−1/2
α (divΓ,Γj) and l ∈ H−1/2

−α (divΓ,Γl). Define the bilinear form

[·, ·] :
∏N−1
k=0 H−1/2

α (divΓ,Γk)×
∏N−1
k=0 H−1/2

−α (divΓ,Γk)→ C as

[J,L] :=

N−1∑
k=0

Bk (jk, lk) , (4.23)

where Bk is the bilinear form defined in (3.5) and the densities J,L are specified as

J = (jk)k∈K0
∈
N−1∏
k=0

H
− 1

2
α (divΓ,Γk), L = (lk)k∈K0

∈
N−1∏
k=0

H
− 1

2
−α(divΓ,Γk).

Then we can even formulate the adjointness of M even
α and W even

−α as well as of Modd
α and W odd

−α with respect
to [·, ·].

Lemma 4.3. For any wave vector α, the operators W even
−α and W odd

−α are the adjoint operators of M even
α and

Modd
α with respect to the bilinear form [·, ·] from (4.23). Thus, we have

[M even
α J,L] =

[
J,W even

−α L
]

and
[
Modd
α J,L

]
=
[
J,W odd

−α L
]

for all J ∈
∏N−1
k=0 H−1/2

α (divΓ,Γk) and L ∈
∏N−1
k=0 H−1/2

−α (divΓ,Γk).

4.4 Equivalence

The following lemma ensures the equivalence of the integral systems (4.13) and (4.14) to the electromagnetic
scattering problem (2.7)-(2.13). We recall that the constant ρk+1 for k ∈ K0 is specified by

ρk+1 =
µkκk+1

µk+1κk
.

Lemma 4.4 (Equivalence for the systems (4.13) and (4.14)). Let the vector-valued density

j = (j0, j1, . . . , jN−1)T ∈
N−1∏
k=0

H
− 1

2
α (divΓ,Γk)

be a solution of the linear system (4.13) if N is even, or of (4.14) if N is odd. Moreover, let N ≥ 2 and assume
that

N
(
C
α,(0)
00

)
= {0}, N

(
C
α,(k+1)
kk

)
= N

(
C
α,(k+1)
k+1,k+1

)
= {0} for k ∈ Kodd \ {N − 1}

and additionallyN (C
α,(N)
N−1,N−1) = {0} if N is even. Then the functions

E0 = − 1

2

[
ρ1Ψα

Eκ0 ,0

(
M

α,(1)
00 + I

)
+ Ψα

Mκ0 ,0
C
α,(1)
00

]
j0

− 1

2

[
ρ1Ψα

Eκ0 ,0
M

α,(1)
01 + Ψα

Mκ0 ,0
C
α,(1)
01

]
j1

 in G0,

Ek = Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk in Gk

for k ∈ Kodd,

Ek =
1

2

[
ρ−1
k Ψα

Eκk ,k−1M
α,(k−1)
k−1,k−2 + Ψα

Mκk
,k−1C

α,(k−1)
k−1,k−2

]
jk−2

+
1

2

[
ρ−1
k Ψα

Eκk ,k−1

(
M

α,(k−1)
k−1,k−1 − I

)
+ Ψα

Mκk
,k−1C

α,(k−1)
k−1,k−1

]
jk−1

− 1

2

[
ρk+1Ψα

Eκk ,k

(
M

α,(k+1)
kk + I

)
+ Ψα

Mκk
,kC

α,(k+1)
kk

]
jk

− 1

2

[
ρk+1Ψα

Eκk ,k
M

α,(k+1)
k,k+1 + Ψα

Mκk
,kC

α,(k+1)
k,k+1

]
jk+1


in Gk
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for k ∈ Keven \ {N − 1},

EN−1 =
1

2

[
ρ−1
N−1Ψα

EκN−1
,N−2M

α,(N−2)
N−2,N−3 + Ψα

MκN−1
,N−2C

α,(N−2)
N−2,N−3

]
jN−3

+
1

2

[
ρ−1
N−1Ψα

EκN−1
,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
+ Ψα

MκN−1
,N−2C

α,(N−2)
N−2,N−2

]
jN−2

− 1

2

[
ρNΨα

EκN−1
,N−1

(
M

α,(N−2)
N−1,N−1 + I

)
+ Ψα

MκN−1
,N−1C

α,(N)
N−1,N−1

]
jN−1


in GN−1,

EN = Ψα
EκN ,N−1jN−1 in GN

for odd N and

EN = − 1

2

[
ρ−1
N Ψα

EκN ,N−1M
α,(N−1)
N−1,N−2 + Ψα

MκN
,N−1C

α,(N−1)
N−1,N−2

]
jN−2

− 1

2

[
ρ−1
N Ψα

EκN ,N−1

(
M

α,(N−1)
N−1,N−1 − I

)
+ Ψα

MκN
,N−1C

α,(N−1)
N−1,N−1

]
jN−1

 in GN

for even N solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionally N (C
α,(N)
N−1,N−1) = {0} if N is odd, then any solution E of the electromagnetic scattering

problem (2.7)-(2.13) provides a solution of the integral equation system (4.13) in case of an even number of
interfacesN and of the integral equation system (4.14) in case of an odd number of interfacesN , respectively.

Proof. We first consider the situation that a density j = (j0, j1, . . . , jN−1)T ∈
∏N−1
k=0 H−1/2

α (divΓ,Γk)
solves the integral equation systems (4.13) if N is even, or (4.14) if N is odd. Then the functions

Ek = Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk in Gk, k ∈ Kodd, (4.24)

and additionally

EN = Ψα
EκN ,N−1jN−1 in GN (4.25)

if N is odd are solutions of the time-harmonic Maxwell equations curl curlE − κ2
kE = 0 in Gk and of

curl curlE− κ2
NE = 0 in GN , respectively. This is easily justified by Lemma 3.6. We recall that these rep-

resentations are unique according to Lemma 3.14 and the assumptions of this lemma. The mapping properties
of the Dirichlet trace and the Neumann trace by (3.4) imply that

γ−D,k−1Ek, γ
−
Nκk ,k−1Ek ∈ H

− 1
2

α (divΓ,Γk−1) and γ+
D,kEk, γ

+
Nκk ,k

Ek ∈ H
− 1

2
α (divΓ,Γk)

for k ∈ Kodd. Moreover, we observe by (3.4) that γ−D,N−1EN , γ
−
NκN ,N−1EN ∈ H−1/2

α (divΓ,ΓN−1) if N is
odd. Hence, the functions

E0 =
1

2

(
ρ1Ψα

Eκ0 ,0
γ−Nκ1 ,0

E1 + Ψα
Mκ0 ,0

γ−D,0E1

)
in G0, (4.26)

Ek =
1

2

(
ρk+1Ψα

Eκk ,k
γ+

Nκk+1
,kEk+1 + Ψα

Mκk
,kγ

+
D,kEk+1

−ρ−1
k Ψα

Eκk ,k−1γ
−
Nκk−1

,k−1Ek−1 −Ψα
Mκk

,k−1γ
−
D,k−1Ek−1

) in Gk∈Keven , (4.27)

and, if N is even, also

EN =
1

2

(
ρ−1
N Ψα

EκN ,N−1γ
−
NκN−1

,N−1EN−1 + Ψα
MκN−1

,N−1γ
−
D,N−1EN−1

)
in GN (4.28)
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solve the time-harmonic Maxwell equations curl curlE − κ2
0E = 0 in G0, curl curlE − κ2

kE = 0 in
Gk, k ∈ Keven, and moreover curl curlE − κ2

NE = 0 in GN in case of an even N , respectively. This
goes back to Lemma 3.6. Furthermore, the latter lemma yields that the fields E0 and EN for even N fulfill the
outgoing wave condition (2.12)-(2.13). Therefore, it remains to prove the validity of the transmission conditions
(2.8)-(2.11).

We first address the verification of the transmission conditions (2.8)-(2.9) across the grating interface Γ. For this,
we apply the Dirichlet trace γ+

D,0 to the electric field E0 represented as in (4.26):

γ+
D,0E0

(3.11),(3.12)
= −1

2

(
ρ1C

α,(0)
00 γ−Nκ1 ,0

E1 +
(
M

α,(0)
00 − I

)
γ−D,0E1

)
. (4.29)

The trace expressions in (4.29) can be reformulated with the help of the potential ansatz (4.24) for k = 1 as

γ−D,0E1
(3.11),(3.12)

= −Cα,(1)
00 j0 − Cα,(1)

01 j1, (4.30)

γ−Nκ0 ,0
E1

(3.11),(3.12)
= −

(
M

α,(1)
00 + I

)
j0 −Mα,(1)

01 j1. (4.31)

Inserting these into (4.29) yields

γ+
D,0E0 =

1

2

[
ρ1C

α,(0)
00

(
M

α,(1)
00 + I

)
+
(
M

α,(0)
00 − I

)
C
α,(1)
00

]
j0

+
1

2

[
ρ1C

α,(0)
00 M

α,(1)
01 +

(
M

α,(0)
00 − I

)
C
α,(1)
01

]
j1.

Since the densities j0 and j1 satisfy the first equation of both the linear systems (4.13) and (4.14), i.e.,[
κ1

µ1
C
α,(0)
00

(
M

α,(1)
00 + I

)
+
κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
00

]
j0

+

[
κ1

µ1
C
α,(0)
00 M

α,(1)
01 +

κ0

µ0

(
M

α,(0)
00 + I

)
C
α,(1)
01

]
j1 = −2κ0

µ0
γ−D,0E

i,

we conclude that

γ+
D,0E0 = −γ−D,0E

i −
(
C
α,(1)
00 j0 + C

α,(1)
01 j1

)
(4.30)

= −γ−D,0E
i + γ−D,0E1.

This corresponds to the first transmission condition (2.8) in the electromagnetic scattering problem (2.7)-(2.13)
rewritten in the form γ−D,0E1 = γ+

D,0E0 + γ−D,0E
i.

For the proof of the second transmission condition (2.9), we recall the representation (4.26) of the electric field
E1. Exploiting the previously verified first transmission condition (2.8), we arrive at

E0 =
1

2

[
ρ1Ψα

Eκ0 ,0
γ−Nκ1 ,0

E1 + Ψα
Mκ0 ,0

(
γ+

D,0E0 + γ−D,0E
i
)]
. (4.32)

With the identities

E0 =
1

2

(
Ψα

Eκ0 ,0
γ+

D,0E0 + Ψα
Mκ0 ,0

γ+
Nκ0 ,0

E0

)
and Ψα

Mκ0 ,0
γ−D,0E

i = −Ψα
Eκ0 ,0

γ−Nκ0 ,0
Ei,

which arise as special cases of the α-quasiperiodic Stratton-Chu integral representation from Lemma 3.12,
equation (4.32) can be reformulated to

1

2
Ψα

Eκ0 ,0

(
γ+

Nκ0 ,0
E0 + γ−Nκ0 ,0

Ei
)

=
1

2
Ψα

Eκ0 ,0
ρ1γ
−
Nκ1 ,0

E1

γ+
D,0,(3.11)

======⇒ C
α,(0)
00

(
γ+

Nκ0 ,0
E0 + γ−Nκ0 ,0

Ei
)

= C
α,(0)
00 ρ1γ

−
Nκ1 ,0

E1.
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The assumption thatN (C
α,(0)
00 ) = {0} already ensures that C

α,(0)
00 is invertible in H−1/2

α (divΓ,Γ0) due to its
Fredholm properties given by Lemma 3.9. Therefore, we deduce that

ρ1γ
−
Nκ1 ,0

E1 = γ+
Nκ0 ,0

E0 + γ−Nκ0 ,0
Ei,

i.e., the transmission condition (2.9) holds.

Next, we simultaneously derive the transmission conditions (2.10) and (2.11) across the surfaces Γ and Γk for
k ∈ Keven. The argumentation resembles the one seen above. We apply the Dirichlet traces γ−D,k−1 and γ+

D,k

to the vector field Ek represented as in (4.27), which gives rise to

γ−D,k−1Ek =
1

2

(
ρ−1
k C

α,(k)
k−1,k−1γ

−
Nκk−1

,k−1Ek−1 +
(
M

α,(k)
k−1,k−1 + I

)
γ−D,k−1Ek−1

−ρk+1C
α,(k)
k−1,kγ

+
Nκk+1

,kEk+1 −M
α,(k)
k−1,kγ

+
D,kEk+1

) (4.33)

and

γ+
D,kEk =

1

2

(
ρ−1
k C

α,(k)
k,k−1γ

−
Nκk−1

,k−1Ek−1 +M
α,(k)
k,k−1γ

−
D,k−1Ek−1

−ρk+1C
α,(k)
kk γ+

Nκk+1
,kEk+1 −

(
M

α,(k)
kk − I

)
γ+

D,kEk+1

)
.

(4.34)

For this, we in particular used the identities (3.11)-(3.12) and (3.13). With the help of the representation (4.24)
in terms of the indices k− 1 and k+ 1, it is now possible to rewrite the Dirichlet and Neumann traces of Ek−1

and Ek+1 occurring in the expressions (4.33) and (4.34) as follows:

γ+
D,k−1Ek−1

(3.11),(3.13)1
= −Cα,(k−1)

k−1,k−2jk−2 − C
α,(k−1)
k−1,k−1jk−1,

γ+
Nκk−1

,k−1Ek−1
(3.12),(3.13)1

= −Mα,(k−1)
k−1,k−2jk−2 −

(
M

α,(k−1)
k−1,k−1 − I

)
jk−1,

γ−D,kEk+1 =

−C
α,(k+1)
kk jk − C

α,(k+1)
k,k+1 jk+1 if k 6= N − 1,

−Cα,(N)
N−1,N−1jN−1 if k = N − 1,

γ−Nκk+1
,kEk+1 =


−
(
M

α,(k+1)
kk + I

)
jk −M

α,(k+1)
k,k+1 jk+1 if k 6= N − 1,

−
(
M

α,(N)
N−1,N−1 + I

)
jN−1 if k = N − 1.

(4.35)

We recall that the densities jl, l ∈ {k − 2, k − 1, k, k + 1}, solve the kth and the (k + 1)st integral equation
in the systems (4.13) and (4.14). Exploiting this after inserting the expressions (4.35) into (4.33)-(4.34), we can
conclude that

γ−D,k−1Ek = −Cα,(k−1)
k−1,k−2jk−2 − C

α,(k−1)
k−1,k−1jk−1

(4.35)
= γ+

D,k−1Ek−1 for k 6= N − 1,

γ−D,N−2EN−1 = −Cα,(N−2)
N−2,N−3jN−3 − Cα,(N−2)

N−2,N−2jN−2
(4.35)

= γ+
D,N−2EN−2

and that

γ+
D,kEk = −Cα,(k+1)

kk jk − C
α,(k+1)
k,k+1 jk+1

(4.35)
= γ−D,kEk+1, for k 6= N − 1,

γ+
D,N−1EN−1 = −Cα,(N)

N−1,N−1jN−1
(4.35)

= γ−D,N−1EN .

This proves the transmission condition (2.10) for k ∈ K if N is odd and for k ∈ K \ {N − 1} if N is even.
Thus, we are left to verify the transmission condition (2.10) for the index N − 1. Applying the Dirichlet trace
γ−D,N−1 to EN , given by (4.28), yields

γ−D,N−1EN = −1

2

(
ρ−1
N C

α,(N)
N−1N−1γ

+
NκN−1

,N−1EN−1

(
M

α,(N)
N−1N−1 + I

)
γ+

D,N−1EN−1

)
(4.36)

22



with the help of (3.11) − (3.12). Inserting the expressions (4.35) for the traces γ+
NκN−1

,N−1EN−1 and

γ+
D,N−1EN−1 in (4.36) and exploiting the validity of the N th equation of the integral equation system (4.13)

leads to

γ−D,N−1EN = −Cα,(N−1)
N−1,N−2jN−2 − Cα,(N−1)

N−1,N−1jN−1
(4.35)

= γ+
D,N−1EN−1.

This clearly corresponds to the desired transmission condition.

Next, we turn to the proof of the transmission condition (2.11). First, consider an index k ∈ Keven. We insert
the transmission condition (2.10) into the representation of the field Ek as in (4.27) to obtain

Ek =
1

2

(
ρk+1Ψα

Eκk ,k
γ−Nκk+1

,kEk+1 + Ψα
Mκk

,kγ
+
D,kEk

)
− 1

2

(
ρ−1
k Ψα

Eκk ,k−1γ
+
Nκk−1

,k−1Ek−1 + Ψα
Mκk

,k−1γ
−
D,k−1Ek

)
.

Identifying this equation with the Stratton-Chu type representation (3.16) of Ek guaranteed by Lemma 3.13
yields

Ψα
Eκk ,k

(
ρk+1γ

−
Nκk+1

,kEk+1 − γ+
Nκk ,k

Ek

)
= Ψα

Eκk ,k−1

(
ρ−1
k γ+

Nκk−1
,k−1 − γ

−
Nκk ,k−1Ek

)
.

Since

ρk+1γ
−
Nκk+1

,kEk+1 − γ+
Nκk ,k

Ek ∈ H
− 1

2
α (divΓ,Γk) and

ρ−1
k γ+

Nκk−1
,k−1 − γ

−
Nκk ,k−1Ek ∈ H

− 1
2

α (divΓ,Γk−1),

we deduce from Lemma 3.15 that

Ψα
Eκk ,k

(
ρk+1γ

−
Nκk+1

,kEk+1 − γ+
Nκk ,k

Ek

)
= 0 and (4.37)

Ψα
Eκk ,k−1

(
ρ−1
k γ+

Nκk−1
,k−1 − γ

−
Nκk ,k−1Ek

)
= 0. (4.38)

At this point, we call attention to the fact that the operators C
α,(k)
kk and C

α,(k)
k−1,k−1 are invertible because they

are Fredholm operators of index zero by Lemma 3.9 and N (C
α,(k)
kk ) = N (C

α,(k)
k−1,k−1) = {0} by assumption.

We now apply the Dirichlet trace γ+
D,k to (4.37) and the Dirichlet trace γ−D,k−1 to (4.38), respectively, to obtain

0
(4.37)

= γ+
D,kΨ

α
Eκk ,k

(
ρk+1γ

−
Nκk+1

,kEk+1 − γ+
Nκk ,k

Ek

)
= −Cα,(k)

kk

(
ρk+1γ

−
Nκk+1

,kEk+1 − γ+
Nκk ,k

Ek

)
and

0
(4.38)

= γ−D,k−1Ψα
Eκk ,k−1

(
ρ−1
k γ+

Nκk−1
,k−1 − γ

−
Nκk ,k−1Ek

)
= −Cα,(k)

k−1,k−1Ψα
Eκk ,k−1

(
ρ−1
k γ+

Nκk−1
,k−1 − γ

−
Nκk ,k−1Ek−1

)
.

Exploiting the invertibility of the operators C
α,(k)
kk and C

α,(k)
k−1,k−1 eventually gives

ρk+1γ
−
Nκk+1

,kEk+1 = γ+
Nκk ,k

Ek and ρ−1
k γ+

Nκk−1
,k−1 = γ−Nκk ,k−1Ek.

This validates the transmission condition (2.11) for k ∈ K if N is odd as well as for k ∈ K \ {N − 1} if N
is even. Thus, only the proof of (2.11) for the index N − 1 for an even number of interfaces N remains open.
We treat this case analogously. We start by inserting the transmission condition (2.10) into the representation
(4.28) of the electric field EN :

EN =
1

2

(
ρ−1
N Ψα

EκN ,N−1γ
+
NκN−1

,N−1EN−1 + Ψα
MκN

,N−1γ
−
D,N−1EN

)
.
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By Lemma 3.12, we have an alternative representation of EN via the α-quasiperiodic Stratton-Chu integral
representation that we can insert above. We arrive at

Ψα
EκN ,N−1

(
ρ−1
N γ+

NκN−1
,N−1EN−1 − γ−NκN ,N−1EN

)
= 0

γ−D,N−1
====⇒ − Cα,(N)

N−1,N−1

(
ρ−1
N γ+

NκN−1
,N−1EN−1 − γ−NκN ,N−1EN

)
= 0.

The invertibility of the Fredholm operator of index zero C
α,(N)
N−1,N−1, justified by N (C

α,(N)
N−1,N−1) = {0}, then

yields

ρ−1
N γ+

NκN−1
,N−1EN−1 = γ−NκN ,N−1EN .

This corresponds to the transmission condition (2.11) for the index N − 1 if N is even and therefore completes
our consideration.

Next, we assume that a solution E of the 2π-biperiodic multilayered electromagnetic scattering problem (2.7)-
(2.13) is given. We denote by Ek the restriction of the electric field E toGk, k ∈ KN

0 . Lemma 3.15 and its proof
imply that for every k ∈ Keven, there exist two unique densities jk−2 and jk−1 lying in H−1/2

α (divΓ,Γk−2)
and H−1/2

α (divΓ,Γk−1), respectively, such that

Ψα
Eκk−1

,k−2jk−2 =
1

2

(
Ψα

Eκk−1
,k−2γ

−
Nκk−1

,k−2Ek−1 + Ψα
Mκk−1

,k−2γ
−
D,k−2Ek−1

)
, (4.39)

Ψα
Eκk−1

,k−1jk−1 = −1

2

(
Ψα

Eκk−1
,k−1γ

+
Nκk−1

,k−1Ek−1 + Ψα
Mκk−1

,k−1γ
+
D,k−1Ek−1

)
(4.40)

holds. From the assumption thatN (C
α,(k−1)
k−2,k−2) = N (C

α,(k−1)
k−1,k−1) = {0} and the fact that the boundary integral

operators C
α,(k−1)
k−2,k−2 and C

α,(k−1)
k−1,k−1 are Fredholm operators of index zero according to Lemma 3.9, we deduce

that the latter are also invertible in H−1/2
α (divΓ,Γk−2) and H−1/2

α (divΓ,Γk−1), respectively. With this, we
easily derive, that

jk−2 = −1

2

[
γ−Nκk−1

,k−2Ek−1 +
(
C
α,(k−1)
k−2,k−2

)−1 (
M

α,(k−1)
k−2,k−2 + I

)
γ−D,k−2Ek−1

]
,

jk−1 =
1

2

[
γ+

Nκk−1
,k−1Ek−1 +

(
C
α,(k−1)
k−1,k−1

)−1 (
M

α,(k−1)
k−1,k−1 − I

)
γ+

D,k−1Ek−1

]
after applying the Dirichlet trace γ−D,k−2 to (4.39) and γ+

D,k−1 to (4.40), respectively. It remains to show the

existence of the density jN−1 ∈ H−1/2
α (divΓ,ΓN−1) in the case that N is odd. Then we can represent the

electric field EN as

EN = Ψα
EκN ,N−1jN−1

and conclude that

jN−1 = −
(
C
α,(N)
N−1,N−1

)−1
EN

due to the invertibility of C
α,(N)
N−1,N−1 by N (C

α,(N)
N−1,N−1) = {0} and Lemma 3.9. Going back to the derivation

of the integral equation systems (4.13) and (4.14) presented in Section 4.1 clearly reveals that the densities
jk ∈ H−1/2

α (divΓ,Γk), k ∈ K0, solve the before mentioned systems of integral equations.

We arrive at a similar equivalence result for the adjoint systems (4.18) and (4.22). In order to enable a readable
formulation of this equivalence, we distinguish between the cases N = 2 and N > 2.
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Lemma 4.5 (Equivalence for the systems (4.18) and (4.22), caseN = 2). LetN = 2 and let the vector-valued
density j = (j0, j1)T ∈

∏1
k=0 H

−1/2
α (divΓ,Γk) be a solution of the linear system (4.18). Moreover, assume

that

N
(
C
α,(1)
00

)
= N

(
C
α,(1)
11

)
= {0}.

Then the functions

E0 = Ψα
Eκ0 ,0

j0 in G0,

E1 =
1

2

[
ρ−1

1 Ψα
Eκ1 ,0

(
M

α,(0)
00 − I

)
+ Ψα

Mκ1 ,0
C
α,(0)
00

]
j0

− 1

2

[
ρ2Ψα

Eκ1 ,1

(
M

α,(2)
11 + I

)
+ Ψα

Mκ1 ,1
C
α,(2)
11

]
j1

 in G1,

E2 = − 1

2

[
ρ−1

2 Ψα
Eκ2 ,1

M
α,(1)
10 + Ψα

Mκ2 ,1
C
α,(1)
10

]
j0

− 1

2

[
ρ−1

2 Ψα
Eκ2 ,1

(
M

α,(1)
11 − I

)
+ Ψα

Mκ2 ,1
C
α,(1)
11

]
j1

 in G2

solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if

N
(
C
α,(0)
00

)
= {0}, N

(
C
α,(2)
11

)
= {0},

then any solution E of the electromagnetic scattering problem (2.7)-(2.13) provides a solution of the integral
equation system (4.13) for N = 2.

Lemma 4.6 (Equivalence for the systems (4.18) and (4.22), caseN > 2). LetN > 2 and let the vector-valued
density j = (j0, j1, . . . , jN−1)T ∈

∏N−1
k=0 H−1/2

α (divΓ,Γk) be a solution of the linear system (4.18) if N is
even, or of (4.22) if N is odd. Moreover, assume that

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionallyN (C
α,(N)
N−1,N−1) if N is odd. Then the functions

E0 = Ψα
Eκ0 ,0

j0 in G0,

E1 =
1

2

[
ρ−1

1 Ψα
Eκ1 ,0

(
M

α,(0)
00 − I

)
+ Ψα

Mκ1 ,0
C
α,(0)
00

]
j0

− 1

2

[
ρ2Ψα

Eκ1 ,1

(
M

α,(2)
11 + I

)
+ Ψα

Mκ1 ,1
C
α,(2)
11

]
j1

− 1

2

[
ρ2Ψα

Eκ1 ,1
M

α,(2)
12 + Ψα

Mκ1 ,1
C
α,(2)
12

]
j2


in G1,

Ek =
1

2

[
ρ−1
k Ψα

Eκk ,k−1M
α,(k−1)
k−1,k−2 + Ψα

Mκk
,k−1C

α,(k−1)
k−1,k−2

]
jk−2

+
1

2

[
ρ−1
k Ψα

Eκk ,k−1

(
M

α,(k−1)
k−1,k−1 − I

)
+ Ψα

Mκk
,k−1C

α,(k−1)
k−1,k−1

]
jk−1

− 1

2

[
ρk+1Ψα

Eκk ,k

(
M

α,(k+1)
kk + I

)
+ Ψα

Mκk
,kC

α,(k+1)
kk

]
jk

− 1

2

[
ρk+1Ψα

Eκk ,k
M

α,(k+1)
k,k+1 + Ψα

Mκk
,kC

α,(k+1)
k,k+1

]
jk+1


in Gk

for k ∈ Kodd \ {1, N − 1},

Ek = Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk in Gk
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for k ∈ Keven,

EN−1 =
1

2

[
ρ−1
N−1Ψα

EκN−1
,N−2M

α,(N−2)
N−2,N−3 + Ψα

MκN−1
,N−2C

α,(N−2)
N−2,N−3

]
jN−3

+
1

2

[
ρ−1
N−1Ψα

EκN−1
,N−2

(
M

α,(N−2)
N−2,N−2 − I

)
+ Ψα

MκN−1
,N−2C

α,(N−2)
N−2,N−2

]
jN−2

− 1

2

[
ρNΨα

EκN−1
,N−1

(
M

α,(N−2)
N−1,N−1 + I

)
+ Ψα

MκN−1
,N−1C

α,(N)
N−1,N−1

]
jN−1


in GN−1,

EN = Ψα
EκN ,N−1jN−1 in GN

for odd N and

EN = − 1

2

[
ρ−1
N Ψα

EκN ,N−1M
α,(N−1)
N−1,N−2 + Ψα

MκN
,N−1C

α,(N−1)
N−1,N−2

]
jN−2

− 1

2

[
ρ−1
N Ψα

EκN ,N−1

(
M

α,(N−1)
N−1,N−1 − I

)
+ Ψα

MκN
,N−1C

α,(N−1)
N−1,N−1

]
jN−1

 in GN

for even N solve the electromagnetic scattering problem (2.7)-(2.13).

On the other hand, if

N
(
C
α,(0)
00

)
= {0}, N

(
C
α,(k+1)
kk

)
= N

(
C
α,(k+1)
k+1,k+1

)
= {0} for k ∈ Kodd \ {N − 1}

and additionally N (C
α,(N)
N−1,N−1) = {0} if N is even, then any solution E of the electromagnetic scattering

problem (2.7)-(2.13) provides a solution of the integral equation system (4.13), in case of an even number of
interfacesN , and of the integral equation system (4.14), in case of an odd number of interfacesN , respectively.

The proofs of Lemmata 4.6 and 4.5 are based on the same ideas as the proof of Lemma 4.4 and are therefore
left to the reader.

5 Solvability of the system of integral equations

In the rest of this paper, we want to discuss the solvability of the linear integral equation systems (4.13) and
(4.14). Since the potential approach applied here arises from the extension of the combined potential ansatz in
[6] for electromagnetic scattering by a single 2π-biperiodic grating profile, we can also adapt the techniques of
proof employed in [6]. We first verify that our integral equation systems are Fredholm of index zero under quite
general assumptions on the electromagnetic material parameters if the grating interfaces of the considered
multilayered structure are smooth, and under more restrictive assumptions if they are only polyhedral Lipschitz
regular. Then it is possible to entail the existence of (possibly unique) solutions to (4.13) and (4.14) depending
on the values of the electric permittivity and the magnetic permeability in each of the material layers. The
uniqueness of solutions to the integral equation systems is separately studied with the help of a variational
argumentation. The solvability of the integral equation systems (4.13) and (4.14) contributes to the proof of an
existence result for the recursive integral equation algorithm derived in [7].

5.1 Fredholmness

Below, we study the Fredholm properties of the linear integral equation systems (4.13), (4.14), (4.18) and (4.22).
Our main result states that the left-hand sides of these equations, i.e., M even

α , Modd
α , W even

α and W odd
α , are

Fredholm operators of index zero in the Hilbert space
∏N−1
k=0 H−1/2

α (divΓ,Γk) under certain assumptions on
the electromagnetic material parameters.
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Theorem 5.1 (Fredholmness). Assume the electromagnetic material parameters εk, µk, k ∈ KN
0 , of the

considered 2π-biperiodic N -layered structure to satisfy (2.2) such that

εk+1 6= −εk and µk+1 6= −µk for k ∈ K0

holds if Γk is smooth, or

Re(εk) Re(εk+1) + Im(εk) Im(εk+1) ≥ 0 and Re(µk) Re(µk+1) + Im(µk) Im(µk+1) ≥ 0

holds if Γk is only polyhedral Lipschitz regular. Then the N ×N sized operators

M even
α ,Modd

α :
N−1∏
k=0

H
− 1

2
α (divΓ,Γk)→

N−1∏
k=0

H
− 1

2
α (divΓ,Γk),

W even
−α ,W odd

−α :
N−1∏
k=0

H
− 1

2
−α(divΓ,Γk)→

N−1∏
k=0

H
− 1

2
−α(divΓ,Γk)

corresponding to the linear integral equation systems (4.13), (4.14), (4.18) and (4.22) are Fredholm operators
of index zero for all wave vectors α fulfilling α3 > 0.

In order to give the proof of Theorem 5.1 a nice structure, we formulate two auxiliary lemmata in advance.

Lemma 5.2. The N ×N sized linear operators

M even
α ,Modd

α :

N−1∏
k=0

H
− 1

2
α (divΓ,Γk)→

N−1∏
k=0

H
− 1

2
α (divΓ,Γk)

from (4.13) and (4.14) are Fredholm operators of index zero if and only if their diagonal elements

(M even
α )k+1,k+1 : H

− 1
2

α (divΓ,Γk)→ H
− 1

2
α (divΓ,Γk),(

Modd
α

)
k+1,k+1

: H
− 1

2
α (divΓ,Γk)→ H

− 1
2

α (divΓ,Γk)

are Fredholm operators of index zero for all k ∈ K0.

Proof. We recall that all integral operators occurring in the elements of M even
α and Modd

α are linear and
bounded. For k 6= j, the kernels of the operators

Cα,κkj ,M
α,κ
kj : H

− 1
2

α (divΓ,Γj)→ H
− 1

2
α (divΓ,Γk)

are smooth on Γk × Γj . Therefore, the operators Cα,κkj and Mα,κ
kj , k 6= j, are compact. From this, we easily

deduce the compactness of all off-diagonal elements (k 6= j)

(M even
α )k+1,j+1 : H

− 1
2

α (divΓ,Γj)→ H
− 1

2
α (divΓ,Γk),(

Modd
α

)
k+1,j+1

: H
− 1

2
α (divΓ,Γj)→ H

− 1
2

α (divΓ,Γk),

i.e., M even
α and Modd

α are compact perturbations of the diagonal operators

diag ((M even
α )11 , (M

even
α )22 , . . . , (M

even
α )NN ) ,

diag
((
Modd
α

)
11
,
(
Modd
α

)
22
, . . . ,

(
Modd
α

)
NN

)
.

Thus, M even
α and Modd

α are Fredholm operators of index zero in the product space
∏N−1
k=0 H−1/2

α (divΓ,Γk) if
and only if (M even

α )k+1,k+1 and
(
Modd
α

)
k+1,k+1

are Fredholm operators of index zero in H−1/2
α (divΓ,Γk).
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Lemma 5.3. Under the assumptions of Theorem 5.1, the operators

(M even
α )k+1,k+1 : H

− 1
2

α (divΓ,Γk)→ H
− 1

2
α (divΓ,Γk),(

Modd
α

)
k+1,k+1

: H
− 1

2
α (divΓ,Γk)→ H

− 1
2

α (divΓ,Γk)

are Fredholm of index zero.

Proof. For k ∈ K0, we define the operator Ak
α : H−1/2

α (divΓ,Γk)→ H−1/2
α (divΓ,Γk) by

Ak
α = ρk+1C

α,(k)
kk

(
M

α,(k+1)
kk + I

)
+
(
M

α,(k)
kk + I

)
C
α,(k+1)
kk

with ρk+1 =
µkκk+1

µk+1κk
. This corresponds to the boundary integral operator Aα for Γ := Γk from [6], which is

a Fredholm operator of index zero under the assumptions of [6, Corollary 5.2] if Γ is smooth and under the
assumptions of [6, Corollary 5.7] if Γ is polyhedral Lipschitz regular. By Lemma 3.8, the adjoint operator of Ak

−α
with respect to the bilinear form Bk is(

Ak
−α

)′
:= ρk+1

(
M

α,(k+1)
kk − I

)
C
α,(k)
kk + C

α,(k+1)
kk

(
M

α,(k)
kk − I

)
.

This operator inherits the Fredholm properties of Ak
−α. Taking a closer look at the boundary integral operators

(M even
α )k+1,k+1 and (Modd

α )k+1,k+1, we realize that

(M even
α )k+1,k+1 =

(
Modd
α

)
k+1,k+1

=
κk
µk

Ak
α for k ∈ Keven ∪ {0},

(M even
α )k+1,k+1 =

(
Modd
α

)
k+1,k+1

= −κk
µk

(
Ak
−α

)′
for k ∈ Kodd.

Since the assumptions of this theorem are in accordance with the assumptions of [6, Corollaries 5.2 and 5.7],
we apply them to conclude that (M even

α )k+1,k+1 and (Modd
α )k+1,k+1 are Fredholm operators of index zero in

H−1/2
α (divΓ,Γk) for all k ∈ K0.

Proof of Theorem 5.1. The auxiliary Lemmata 5.2 and 5.3 immediately yield that M even
α and Modd

α are Fred-
holm operators of index zero in

∏N−1
k=0 H−1/2

α (divΓ,Γk). Together with Lemma 4.3, we moreover infer that

W even
−α and W odd

−α are Fredholm operators of index zero in
∏N−1
k=0 H−1/2

α (divΓ,Γk).

5.2 Uniqueness

This subsection is concerned with the uniqueness of solutions to the systems of linear integral equations (4.13)
and (4.14). Our main result reads as follows.

Theorem 5.4 (Uniqueness). Let the electromagnetic material parameters εk, µk, k ∈ KN
0 , of the considered

2π-biperiodic N -layered structure satisfy (2.2) such that ε0, µ0 /∈ R− and εN , µN /∈ R−. Moreover, assume
that one of the following situations holds for εj , εj+1, µj and µj+1 for some j ∈ K0:

(i) εj , µj ∈ R such that at least one of them is positive and

Im (εj+1) ≥ 0 and Im (µj+1) ≥ 0 with Im (εj+1 + µj+1) > 0;

(ii) εj+1, µj+1 ∈ R such that at least one of them is positive and

Im (εj) ≥ 0 and Im (µj) ≥ 0 with Im (εj + µj) > 0;
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(iii) Im (εj) , Im (εj+1) , Im (µj) , Im (µj+1) ≥ 0 with

Im (εj + µj) > 0 and Im (εj+1 + µj+1) > 0.

Then, depending on the parity of N , the linear integral equation systems (4.13) or (4.14) have at most one
solution J ∈

∏N−1
k=0 H−1/2

α (divΓ,Γk) if

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionallyN (C
α,(N)
N−1,N−1) = {0} in case of an odd number of interfaces N .

The proof of Theorem 5.4 requires several auxiliary lemmata, which are presented hereafter.

Lemma 5.5. Let the electric permittivities εk and the magnetic permeabilities µk, k ∈ KN
0 , satisfy (2.2). Then,

if κk ∈ R for some k ∈ KN
0 , we have

Im
(
β

(n)
k

)
> 0 for all except of a finite number Nk of n ∈ Z2.

The excluded n ∈ Nk satisfy Im(β
(n)
k ) = 0. For all other values of κk, the imaginary part of β

(n)
k is non-

negative for all n ∈ Z2, i.e., Im(β
(n)
k ) > 0 for all n ∈ Z2.

Lemma 5.6. Let the electromagnetic material parameters εk and µk, k ∈ KN
0 , satisfy (2.2). Then we have

Im

(
εk
κ2
k

)
≤ 0 for all k ∈ KN

0 . (5.1)

Both Lemma 5.5 and Lemma 5.6 are shown by simple computations.

The next auxiliary result is a particular type of Holmgren’s uniqueness theorem (HUT) for the time-harmonic
Maxwell equations. The original version of Holmgren’s theorem is found in [14].

Theorem 5.7 (HUT for time-harmonic Maxwell’s equations). Let G be a connected and bounded polyhedral
Lipschitz domain and assume that E ∈ H (curl, G) is a solution of the time-harmonic Maxwell equations
curl curlE− κ2E = 0 in G. If there exists an open set U such that U ∩ ∂G 6= ∅ and

γDE = γNκE = 0 on U ∩ ∂G (5.2)

holds, then E already vanishes in all of G.

Theorem 5.7 can be verified by adapting the proof of Theorem 3.5 in [13], which presents the corresponding
result for acoustics, to electromagnetics (see also [10, Theorem 6.5]).

Proof of Theorem 5.4. For the verification of Theorem 5.4, we reuse the ideas of the proof of Theorem 5.9 from
[6] and make a proof by contradiction. Depending on the parity of N , let

J ∈
N−1∏
k=0

H
− 1

2
α (divΓ,Γk)

be a nontrivial solution ofM even
α = 0 orModd

α = 0. With the help of Lemma 4.4, it is then possible to compose
an α-quasiperiodic electric field E in Gk, k ∈ KN

0 , from J, which solves the homogeneous 2π-biperiodic
multilayered electromagnetic scattering problem with respect to the transmission conditions

γ+
D,kEk = γ−D,kEk+1 and µk+1γ

+
D,k (curlEk) = µkγ

−
D,k (curlEk+1) (5.3)
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for k ∈ K0. Next, we want to derive a variational formulation in terms of E in the domain GH introduced in
(2.3) for a fixed H ∈ R+. Speaking visually, GH is a periodically extendable cell of width 2π in both x1- and
x2-direction that contains all considered grating interfaces Γk, k ∈ K0, of the considered multilayered structure
and is bounded by the plane surfaces

ΓH
± := {x ∈ Q× R : x3 = ±H}

with the outer normals nH
± = (0, 0,±1)T. Furthermore, we recall the definition of the bounded domains

GH
0 = GH ∩G0 and GH

N = GH ∩GN . Our first step now consists in multiplying the time-harmonic Maxwell
equations (2.7) by ε

κ2E. Afterwards, we integrate the resulting expression over the polyhedral Lipschitz domain

Ω := GH
0 ∪

N−1
k=1 Gk ∪ GH

N and apply Green’s identity (3.6) for the curl operator in the polyhedral Lipschitz
domains GH

0 , G
H
N and Gk, k ∈ K , in terms of their outer unit normals:

0 =

∫
Ω

(
curl curlE− κ2E

)
· ε
κ2

E dx

(3.6)
=

∫
GH

ε

κ2
|curlE|2 − ε |E|2 dx+ B∂GH

0

(
γD (curlE) ,

ε0
κ2

0

γDE

)
+
N−1∑
k=1

B∂Gk
(
γD (curlE) ,

εk
κ2
k

γDE

)
+ B∂GH

N

(
γD (curlE) ,

εN
κ2
N

γDE

)
.

The α-quasiperiodicity of the integrands implies that

B{x∈∂GH
∗ : x1=−π}

(
γD (curlE) ,

ε∗
κ2
∗
γDE

)
+ B{x∈∂GH

∗ : x1=π}

(
γD (curlE) ,

ε∗
κ2
∗
γDE

)
= 0,

B{x∈∂GH
∗ : x2=−π}

(
(curlE) ,

ε∗
κ2
∗
γDE

)
+ B{x∈∂GH

∗ : x2=π}

(
γD (curlE) ,

ε∗
κ2
∗
γDE

)
= 0

for ∗ ∈ {0, N} and

B{x∈∂Gk : x1=−π}

(
γD (curlE) ,

εk
κ2
k

γDE

)
+ B{x∈∂Gk : x1=π}

(
γD (curlE) ,

εk
κ2
k

γDE

)
= 0,

B{x∈∂Gk : x2=−π}

(
γD (curlE) ,

εk
κ2
k

γDE

)
+ B{x∈∂Gk : x2=π}

(
γD (curlE) ,

εk
κ2
k

γDE

)
= 0

for k ∈ K . Our equation so far can thus be reformulated to

0 =

∫
GH

ε

κ2
|curlE|2 − ε |E|2 dx+ B∂GH

0

(
γD (curlE) ,

ε0
κ2

0

γDE

)∣∣∣∣
Γ0

+
N−1∑
k=1

B∂Gk
(
γD (curlE) ,

εk
κ2
k

γDE

)∣∣∣∣
Γk−1

+ B∂Gk
(
γD (curlE) ,

εk
κ2
k

γDE

)∣∣∣∣
Γk

+ B∂GH
N

(
γD (curlE) ,

εk
κ2
k

γDE

)∣∣∣∣
ΓN−1
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−
∫

ΓH
+

ε0
κ2

0

r
(
γD|ΓH

+
(curlE0)

)
γD|ΓH

+
E0 dσ −

∫
ΓH
−

εN
κ2
N

r
(
γD|ΓH

−
(curlEN )

)
γD|ΓH

−
EN dσ

(5.3)1
=

∫
GH

ε

κ2
|curlE|2 − ε |E|2 dx

+

N−1∑
k=0

[
Bk

(
εk+1

κ2
k+1

γ−D,k (curlEk+1) , γ+
D,kEk

)
− Bk

(
εk
κ2
k

γ+
D,k (curlEk) , γ

+
D,kEk

)]

+

∫
ΓH

+

ε0
κ2

0

[
(curlE0)1

(
E0

)
2
− (curlE0)2

(
E0

)
1

]
dσ

+

∫
ΓH
−

εN
κ2
N

[
(curlEN )2

(
EN
)

1
− (curlEN )1

(
EN
)

2

]
dσ

(5.3)2
=

∫
GH

ε

κ2
|curlE|2 − ε |E|2 dx

+
N−1∑
k=0

Bk

( (
µk+1εk+1

µkκ
2
k+1

− εk
κ2
k

)
︸ ︷︷ ︸

=0

γ+
D,k (curlEk) , γ

+
D,kEk

)

+

∫
ΓH

+

ε0
κ2

0

[
(curlE0)1

(
E0

)
2
− (curlE0)2

(
E0

)
1

]
dσ

+

∫
ΓH
−

εN
κ2
N

[
(curlEN )2

(
EN
)

1
− (curlEN )1

(
EN
)

2

]
dσ.

In the above calculation, the expressions r(γD|ΓH
±
·) on the plane surfaces ΓH

± are computed via the classical

cross product as (γD|ΓH
±
· ×nH

±). The electric fields E0 and EN solve the electromagnetic scattering problem

in the semi-infinite domains G0 and GN and thus in particular fulfill the outgoing wave condition (2.12)-(2.13).
Combined with divE = 0, this yields the identities

α
(n)
1

(
E

0
n

)
1

+ α
(n)
2

(
E

0
n

)
2

+ β
(n)
0

(
E

0
n

)
3

= 0 on ΓH
+, (5.4)

α
(n)
1

(
E
N
n

)
1

+ α
(n)
2

(
E
N
n

)
2
− β(n)

N

(
E
N
n

)
3

= 0 on ΓH
− (5.5)

for the complex-valued Rayleigh coefficients E0
n and ENn , n ∈ Z2, on ΓH

+ and ΓH
−, respectively. Together with

the outgoing wave condition (2.12)-(2.13) these relations give rise to∫
ΓH

+

ε0
κ2

0

[
(curlE0)1

(
E0

)
2
− (curlE0)2

(
E0

)
1

]
dσ

(5.4)
= −

∑
n∈Z2

Mα,0
n E0

n ·E
0
ne
−2 Im(β(n)

0 )H

and∫
ΓH
−

εN
κ2
N

[
(curlEN )2

(
EN
)

1
− (curlEN )1

(
EN
)

2

]
dσ

(5.5)
= −

∑
n∈Z2

Mα,N
n ENn ·E

N
n e
−2 Im(β(n)

N )H

with

Mα,0
n :=

i4π2ε0
κ2

0

β
(n)
0 0 0

0 β
(n)
0 0

0 0 β
(n)
0

 , Mα,N
n :=

i4π2εN
κ2
N

β
(n)
N 0 0

0 β
(n)
N 0

0 0 β
(n)
N

 .

Inserting this into the variational equation for E from above yields∫
GH

ε

κ2
|curlE|2 − ε |E|2 dx

=
∑
n∈Z2

(
Mα,0
n E0

n ·E
0
ne
−2 Im(β(n)

0 ) +Mα,N
n ENn ·E

N
n e
−2 Im(β(n)

N )
)
.

(5.6)
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We now take the imaginary part of (5.6) and let H→∞: Exploiting that, by Lemma 5.5, we have Im(β
(n)
0 ) ≥ 0

and Im(β
(n)
N ) ≥ 0 for all n ∈ Z2 with Im

(
β

(n)
0

)
= 0 and Im

(
β

(n)
N

)
= 0 only for a finite number of n ∈ Z2

if κ2
0 ∈ R and κ2

N ∈ R, we then obtain that

lim
H→∞

∫
GH

0

Im

(
ε0
κ2

0

)
|curlE0|2 − Im (ε0) |E0|2 dx

+

N−1∑
k=1

∫
Gk

Im

(
εk
κ2
k

)
|curlEk|2 − Im (εk) |Ek|2 dx (5.7)

+ lim
H→∞

∫
GH
N

Im

(
εN
κ2
N

)
|curlEN |2 − Im (εN ) |EN |2 dx

= 4π2

Im

(
i
ε0
κ2

0

)∑
B0

β
(n)
0

∣∣E0
n

∣∣2 + Im

(
i
εN
κ2
N

)∑
BN

β
(n)
N

∣∣ENn ∣∣2


with B0 :=
{
n ∈ Z2 : β

(n)
0 > 0

}
and BN :=

{
n ∈ Z2 : β

(n)
N > 0

}
as κ0, κN /∈ R−. This means

that in particular the limit expression on the left-hand side exists. The assumptions of this theorem on the
electromagnetic material parameters make an application of Lemma 5.6 possible. In fact, with Im(εk/κ

2
k) ≤ 0,

given by (5.1), and − Im(εk) ≤ 0 for all k ∈ KN
0 , we arrive at

lim
H→∞

∫
GH

0

Im

(
ε0
κ2

0

)
|curlE0|2 − Im (ε0) |E0|2 dx

+

N−1∑
k=1

∫
Gk

Im

(
εk
κ2
k

)
|curlEk|2 − Im (εk) |Ek|2 dx

+ lim
H→∞

∫
GH
N

Im

(
εN
κ2
N

)
|curlEN |2 − Im (εN ) |EN |2 dx ≤ 0.

(5.8)

Next, we take a look at the right-hand side of equation (5.7). Lemma 5.5 implies that β
(n)
0 ∈ R \ {0} and

β
(n)
N ∈ R \ {0} if and only if κ0 ∈ R and κN ∈ R. Since, by assumption, we excluded the case that
ε0, µ0 ∈ R− and εN , µN ∈ R−, the latter requirement is only satisfied if ε0, µ0 ∈ R+ and εN , µN ∈ R+.
Then the right-hand side of equation (5.7) is non-negative and we altogether obtain

0
(5.8)

≥ lim
H→∞

∫
GH

0

Im

(
ε0
κ2

0

)
|curlE0|2 − Im (ε0) |E0|2 dx

+
N−1∑
k=1

∫
Gk

Im

(
εk
κ2
k

)
|curlEk|2 − Im (εk) |Ek|2 dx (5.9)

+ lim
H→∞

∫
GH
N

Im

(
εN
κ2
N

)
|curlEN |2 − Im (εN ) |EN |2 dx

= 4π2

Im

(
i
ε0
κ2

0

)∑
B0

β
(n)
0

∣∣E0
n

∣∣2 + Im

(
i
εN
κ2
N

)∑
BN

β
(n)
N

∣∣ENn ∣∣2
 ≥ 0.

In fact, this in particular gives

lim
H→∞

∫
GH

0

Im

(
ε0
κ2

0

)
|curlE0|2 − Im (ε0) |E0|2 dx = 0, (5.10)

lim
H→∞

∫
GH
N

Im

(
εN
κ2
N

)
|curlEN |2 − Im (εN ) |EN |2 dx = 0, (5.11)
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∫
Gk

Im

(
εk
κ2
k

)
|curlEk|2 − Im (εk) |Ek|2 dx = 0 for k ∈ K. (5.12)

Denote by j the index in K for which the selected electromagnetic material parameters εj , εj+1, µj and µj+1

satisfy the assumptions of one of the cases (i)-(iii). If j = 0 or j = N , we deduce from (5.10) and (5.11) that
Ej = 0 a.e. in Gj . If j ∈ K , we immediately observe that either

Ej = 0 or curlEj = 0 in cases (ii), (iii) (5.13)

or

Ej+1 = 0 or curlEj+1 = 0 in cases (i), (iii) (5.14)

can be inferred from (5.12) for k = j and k = j+1. If curlEj = 0 holds in (5.13), the time-harmonic Maxwell
equations curl curlEj − κ2

jEj = 0 imply that then also Ej = 0. In (5.14), we similarly conclude that also
Ej+1 = 0 is true if curlEj+1 = 0. Furthermore, if one of the identities in (5.14) is satisfied, we have

γ−D,jEj
(5.3)
= γ+

D,jEj+1 = 0 and γ−Nj ,jEj
(5.3)
= γ+

Nj+1,j
Ej+1 = 0

and an application of Holmgren’s uniqueness theorem in the version of Theorem 5.7 to the bounded domainGj
implies that Ej = 0 in Gj . Thus, all in all, we conclude that

Ej = 0 a.e. in Gj in situations (i)-(iii) (5.15)

for the characteristic index j ∈ KN
0 .

For j ∈ KN
0 , the conclusion (5.15) in particular gives rise to

γ−D,j−1Ej = γ−Nκj ,j−1Ej = γ+
D,jEj = γ+

Nκj ,j
Ej = 0 a.e. in Gj

for the characteristic index j ∈ KN
0 in all situations (i)-(iii). With the transmission conditions (5.3), we derive

that

γ+
D,j−1Ej−1 = γ+

Nκj−1 ,j−1Ej−1 = 0 for all j ∈ KN and (5.16)

γ−D,jEj+1 = γ−Nκj+1 ,j
Ej+1 = 0 for all j ∈ K0. (5.17)

We recapitulate that the electric fields Ej−1 and Ej+1 are solutions of the time-harmonic Maxwell equations
curl curlE − κ2

j−1E = 0 and curl curlE − κ2
j+1E = 0, respectively, in addition to (5.16) and (5.17),

respectively. Thus, we are able to apply Holmgren’s uniqueness theorem (see Theorem 5.7) if j − 1 6= 0 and
j + 1 6= N . This results in Ej−1 = 0 in Gj−1 as well as Ej+1 = 0 in Gj+1. If j − 1 = 0 or j + 1 = N , the
Stratton-Chu integral representation from Lemma 3.12 also shows that

E0 =
1

2

(
Ψα

Eκ0 ,0
γ+

Nκ0 ,0
E0 + Ψα

Mκ0 ,0
γ+

D,0E0

)
(5.17)

= 0 in G0 or

EN = −1

2

(
Ψα

EκN ,N−1γ
−
NκN ,N−1EN + Ψα

MκN
,N−1γ

−
D,N−1EN

)
(5.17)

= 0 in GN .

This type of argumentation can easily be applied iteratively. We altogether obtain that

Ek = 0 in Gk for k ∈ KN
0 .

Due to the considered potential ansatz, this means that for k ∈ Kodd

Ek = Ψα
Eκk ,k−1jk−1 + Ψα

Eκk ,k
jk = 0

Lemma 3.15
======⇒ Ψα

Eκk ,k−1jk−1 = Ψα
Eκk ,k

jk = 0 (5.18)
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and moreover

Ψα
EκN ,N−1jN−1 = 0 (5.19)

if N is odd. At this point, we recall the assumption that

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionally N (C
α,(N)
N−1,N−1) = {0} in case of an odd number of interfaces N . All involved boundary

integral operators

C
α,(k)
k−1,k−1 : H

− 1
2

α (divΓ,Γk−1)→ H
− 1

2
α (divΓ,Γk−1),

C
α,(k)
kk : H

− 1
2

α (divΓ,Γk) → H
− 1

2
α (divΓ,Γk)

for k ∈ Kodd as well as additionally C
α,(N)
N−1,N−1 : H−1/2

α (divΓ,ΓN−1) if N is odd are all Fredholm operators
of index zero by Lemma 3.9 and are therefore already invertible. Then

−Cα,(k)
k−1,k−1jk−1

(3.11)
= γ+

D,k−1Ψα
Eκk ,k−1jk−1

(5.18)
= 0 =⇒ jk−1 = 0,

−Cα,(k)
k,k jk

(3.11)
= γ−D,kΨ

α
Eκk ,k

jk
(5.18)

= 0 =⇒ jk = 0

for k ∈ Kodd and in addition

−Cα,(N)
N−1,N−1jN−1

(3.11)
= γ+

D,N−1Ψα
EκN ,N−1jN−1

(5.19)
= 0 =⇒ jN−1 = 0

if the number of interfaces N is odd. In summary, we derived that J = 0 in all of the situations (i)-(iii), which
contradicts the assumed nontriviality of J. Thus, under the assumptions of this theorem, solutions J lying in∏N−1
k=0 H−1/2

α (divΓ,Γk) to the linear integral equation systems (4.13) for even N and (4.14) for odd N are
unique.

5.3 Existence

Finally, the existence of solutions to the linear integral equation systems (4.13) and (4.14) is studied. We assume
that the requirements of Theorem 5.1 are satisfied, which entails thatM even

α andModd
α are Fredholm operators

of index zero in the product space
∏N−1
k=0 H−1/2

α (divΓ,Γk). Then we separately consider their left-hand sides
M even
α and Modd

α to either have a trivial nullspace, i.e., to be invertible, or to have a nontrivial nullspace. In the
latter case,

R (M even
α ) 6=

N−1∏
k=0

H
− 1

2
α (divΓ,Γk) and R

(
Modd
α

)
6=

N−1∏
k=0

H
− 1

2
α (divΓ,Γk)

holds and the existence of (possibly nonunique) solutions to (4.13) and (4.14) is no longer guaranteed.

Theorem 5.8 (Solvability of M even
α and Modd

α ). Let the assumptions of Theorem 5.4 hold. Moreover, assume
that the electromagnetic material parameters εk and µk, k ∈ KN

0 , satisfy (2.2) such that

εk+1 6= −εk and µk+1 6= −µk for k ∈ K0

if Γk is smooth, or

Re(εk) Re(εk+1) + Im(εk) Im(εk+1) ≥ 0 and Re(µk) Re(µk+1) + Im(µk) Im(µk+1) ≥ 0

if Γk is only polyhedral Lipschitz regular. Then there exists a density J ∈
∏N−1
k=0 H−1/2

α (divΓ,Γk) that uniquely
solves either the system (4.13) if N is even or the system (4.14) if N is odd, i.e., either

M even
α J = fα for even N or Modd

α J = fα for odd N,

where fα is given by (4.19)-(4.21).
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Since, under the assumptions of Theorem 5.8, M even
α and Modd

α are both Fredholm operators of index zero
in
∏N−1
k=0 H−1/2

α (divΓ,Γk) and a uniqueness result in form of Theorem 5.4 holds, the operators M even
α and

Modd
α are already invertible. This easily proves Theorem 5.8.

Finally, we investigate the existence of solutions to (4.13) and (4.14) for material parameter choices such that
Theorem 5.4 can not be applied, i.e., in situations in which M even

α and Modd
α are no longer invertible in∏N−1

k=0 H−1/2
α (divΓ,Γk). Indeed, we consider electromagnetic material parameters εk, µk, k ∈ KN

0 , sat-
isfying (2.2) such that εk, µk ∈ R. Unfortunately, we fail to verify a general existence result in the mentioned
situations. However, the next theorem still provides rather general conditions on the electromagnetic material
parameters that ensure the existence of solutions to the systems (4.13) and (4.14) for real-valued εk and µk,
k ∈ KN

0 .

Theorem 5.9 (Existence of solutions to (4.13) and (4.14)). Let the electromagnetic material parameters εk,
µk ∈ R, k ∈ KN

0 , satisfy (2.2) such that sgn (ε0µ0) > 0 and sgn(µ0µN ) > 0 if sgn(εNµN ) > 0. Moreover,
assume, for k ∈ K0, that

εk+1 6= −εk and µk+1 6= −µk

if Γk is smooth, or

Re(εk) Re(εk+1) + Im(εk) Im(εk+1) ≥ 0 and Re(µk) Re(µk+1) + Im(µk) Im(µk+1) ≥ 0

if Γk is only polyhedral Lipschitz regular. Then, if

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionally N (C
α,(N)
N−1,N−1) = {0} if N is odd, there exists at least one solution J, lying in the product

space
∏N−1
k=0 H−1/2

α (divΓ,Γk), of either the integral equation system (4.13) in the case that N is even or the
integral equation system (4.14) in the case that N is odd.

The proof strategy for Theorem 5.9 is to extend the proof of Theorem 5.13 from [6] from single to multi-profile
scattering. We recall the adjoint relation of the systems (4.13) and (4.18) as well as of the systems (4.14) and
(4.22) with respect to the bilinear form [·, ·] from (4.23) in the sense of Lemma 4.3, i.e.,

[M even
α J,L] =

[
J,W even

−α L
]

and
[
Modd
α J,L

]
=
[
J,W odd

−α L
]

for all J ∈
∏N−1
k=0 H−1/2

α (divΓ,Γk) and L ∈
∏N−1
k=0 H−1/2

−α (divΓ,Γk). The vector f consisting of N compo-
nents - each corresponding to a two-dimensional tangent vector - is defined by

f :=

(
−2κ0

µ0
γ−D,0E

i, 0, . . . , 0

)T

.

It describes both the right-hand sides of (4.13) and (4.14). We are then able to reduce the proof of Theorem 5.9
to showing that either

[f ,L] = 0 for all L ∈
N−1∏
k=0

H
− 1

2
−α(divΓ,Γk) with W even

−α L = 0 (5.20)

if the number of interfaces N in the considered 2π-biperiodic multilayered structure is even, or

[f ,L] = 0 for all L ∈
N−1∏
k=0

H
− 1

2
−α(divΓ,Γk) with W odd

−α L = 0 (5.21)

if N is odd. This essentially goes back to the fact that, under the assumptions of Theorem 5.9, the N × N
integral operators M even

α and Modd
α are Fredholm operators of index zero by Theorem 5.1. In fact, then the

ranges of M even
α and Modd

α are closed.
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Proof of Theorem 5.9. Let L := (l0, . . . , lN−1)T be an arbitrary density lying in
∏N−1
k=0 H−1/2

−α (divΓ,Γk)
such that either L ∈ N (W even

−α ) if the number of grating surfaces N is even or L ∈ N (W odd
−α ) if N is

odd. Then Lemma 4.6 provides us with a (−α)-quasiperiodic solution E := Ek in Gk, k ∈ KN
0 , of the

homogeneous version of the 2π-biperiodic electromagnetic scattering problem (2.7)-(2.13) since

N
(
C
α,(k)
k−1,k−1

)
= N

(
C
α,(k)
kk

)
= {0} for k ∈ Kodd

and additionally N (C
α,(N)
N−1,N−1) = {0} if N is odd holds. Such a solution in particular satisfies a variational

equation similar to (5.7) in terms of the complex-valued Rayleigh coefficients E0
n and ENn - defined in Q × R

above ΓH
+ and below ΓH

−, respectively - after replacing the wave vector α by (−α):

lim
H→∞

∫
GH

0

Im

(
ε0
κ2

0

)
|curlE0|2 − Im (ε0) |E0|2 dx

+

N−1∑
k=1

∫
Gk

Im

(
εk
κ2
k

)
|curlEk|2 − Im (εk) |Ek|2 dx

+ lim
H→∞

∫
GH
N

Im

(
εN
κ2
N

)
|curlEN |2 − Im (εN ) |EN |2 dx

= 4π2

Im

(
i
ε0
κ2

0

)∑
B0

β
(n)
0

∣∣E0
n

∣∣2 + Im

(
i
εN
κ2
N

)∑
BN

β
(n)
N

∣∣ENn ∣∣2
 ,

whereB0 :=
{
n ∈ Z2 : β

(n)
0 ∈ R \ {0}

}
andBN :=

{
n ∈ Z2 : β

(n)
N ∈ R \ {0}

}
. Since all considered

electromagnetic material parameters are real-valued, we remain with

Im

(
i
ε0
κ2

0

)∑
B0

β
(n)
0

∣∣E0
n

∣∣2 + Im

(
i
εN
κ2
N

)∑
BN

β
(n)
N

∣∣ENn ∣∣2 = 0. (5.22)

The specific assumptions on ε0, µ0, εN and µN , i.e., sgn(ε0µ0) > 0 and sgn(µ0µN ) > 0 if sgn(εNµN ) > 0,
guarantee that

sgn

(
Im

(
i
ε0
κ2

0

)
Im

(
i
εN
κ2
N

))
= sgn

(
1

ω4µ0µN

)
> 0

if sgn(εNµN ) > 0. In the remaining case that sgn(εNµN ) < 0, the electric permittivity εN and the magnetic

permeability µN are of different sign. Therefore, Re(κ2
N ) = 0 and thus Re(β

(n)
N ) = 0, from which we infer

that the second term on the right-hand side of (5.22) is equal to zero. All in all, we can then conclude that

E0
n = 0 in Q× R above ΓH

+ for those n ∈ Z2 such that β
(n)
0 ∈ R \ {0}.

From the properties of the wave vector (−α) of the incident plane wave Ei occurring in the linear integral
equation systems (4.13) and (4.14), it is clear that

β
(0)
0 =

√
κ2

0 −
∣∣−α(0)

∣∣2 =

√
κ2

+ − |−α̃|
2 = α3 > 0.

This insight leads to

E0
0 = 0 in Q× R above ΓH

+. (5.23)

The Rayleigh coefficient E0
0 can be computed explicitely by using the potential ansatz E0 = Ψ−αEκ0 ,0

l0 in G0.
Executing this, leads together with the identity (5.23) - in the same manner as in the proof of Theorem 5.13 from
[6] - to the conclusion that

g = 0 or g ‖ α (5.24)
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for all vector-valued densities L ∈
∏N−1
k=0 H−1/2

−α (divΓ,Γk) such that either L ∈ N (W even
−α ) if N is even or

L ∈ N (W odd
−α ) if N is odd, where

gj :=

∫
Γ0

(iπ,0l0)j e
i(α̃·ỹ−α3y3) dσ(y) for j ∈ {1, 2, 3}.

Recalling that

f =

(
−2κ0

µ0
γ−D,0E

i, 0, . . . , 0

)T

is the left-hand side of each of the integral equation systems (4.13) and (4.14) and n0 denotes the upwards
pointing normal on Γ0, we obtain by simple manipulations that

[f ,L] =
N−1∑
k=0

Bk (fk+1, lk) = B0

(
−2κ0

µ0
γ−D,0E

i, l0

)
=

2κ0

µ0

∫
Γ0

Ei(y) · (iπ,0l0)(y) dσ(y).

Inserting the respresentation of the incident plane wave Ei as Ei = pei(α·ỹ−α3y3) in the equation above and
exploiting that the property α ‖ g from (5.24) is equivalent to

p · g = 0 due to α · p (2.6)
= 0,

we finally conclude that

[f ,L] =
2κ0

µ0
p · g (5.24)

= 0 for all L ∈ H
− 1

2
−α(divΓ,Γk) with W even

−α L = 0

if the number of grating interfaces N is even, and

[f ,L] =
2κ0

µ0
p · g (5.24)

= 0 for all L ∈ H
− 1

2
−α(divΓ,Γk) with W odd

−α L = 0

if N is odd. This proves our claim.

6 Conclusion

In this article, we presented an integral equation method for the treatment of electromagnetic scattering by
2π-biperiodic multilayered structures composed of N ≥ 2 vertically stacked non-self-intersecting grating in-
terfaces of polyhedral Lipschitz regularity. It led to a parity-dependent system of integral equations equivalent
to the 2π-biperiodic N -layered electromagnetic scattering problem. In order to achieve this, we applied a par-
ticular combined potential ansatz, which is the natural extension of the combined potential ansatz used in [6]
for the corresponding problem of single profile scattering: Above the structure, we assumed an α-quasiperiodic
Stratton-Chu integral representation and then alternated a two-term electric potential ansatz with two unknown
densities with an α-quasiperiodic Stratton-Chu type integral representation. Below the scatterer we either as-
sumed a Stratton-Chu integral representation or a simple electric potential ansatz. Due to this approach, we
encounter boundary integral equations that are structurally similar to the ones occurring in the study of single
profile scattering as in [6]. With the help of the same techniques as those employed in the presence of only
one grating interface, we were therefore able to prove analogous results on the Fredholmness of the system of
integral equations as well as on existence and uniqueness of its solution.

It is clear that the numerical solution of a system of N integral equations is computationally very expensive
to obtain, in particular for a large N . Therefore, we are interested in the development of a more sophisticated
method. That this is possible is shown in the consecutive article [7], in which we introduce a recursive integral
equation algorithm. In the course of its study, we exploit the analytical findings of the present paper.
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